Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 1 - 25 of 401 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Although known for being a strong and versatile building material, there are a number of factors that affect the sustainability of concrete, and a variety of measures that can be taken to increase its durability and extend its service life, thus protecting the health, safety, and welfare of the users. This course discusses the environmental impact of concrete and some of the main causes of concrete deterioration, and examines how crystalline waterproofing technology can be employed to increase the durability and sustainability of concrete.

  • ( ~ 1 hour ) 

    Architectural acoustic design focuses on managing airborne and impact sound within indoor and outdoor spaces. This course addresses the acoustic challenges associated with outdoor recreational spaces, focusing on the surge in pickleball popularity. Participants will learn the fundamentals of sound propagation in open-air environments and explore how modern acoustic products can reduce unwanted noise while maintaining functionality and the design intent. Acoustic solutions for indoor spaces requiring noise reduction are also covered, as well as the role of acoustic barriers in meeting the requirements of the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ v2.

  • ( ~ 1 hour, 30 minutes ) 

    There is no substitute for the natural beauty of newly installed tropical hardwood, but keeping it looking great and achieving the desired performance over time require careful attention to detail. Choosing the best hardwood species and specifying the appropriate fastening and finishing systems will ensure an aesthetically pleasing, low-maintenance, and successful design in terms of installation, performance, and appearance. This course discusses wood species specification, installation techniques, and finishing methods for tropical hardwoods in conventional and sustainable buildings. As well, international programs that are used to successfully determine sustainability are examined.

  • ( ~ 1 hour ) 

    Artificial turf is essentially a flooring fabric made from a variety of materials and layers. Since its creation, the artificial turf industry has studied the behavior of natural grass and the safety and sustainability of artificial grass. This course examines today’s artificial grass systems and discusses how they are carefully planned, designed, and built to suit the specific needs of an outdoor residential or commercial landscape.

  • ( ~ 1 hour ) 

    Homeowners are increasingly interested in creating outdoor living spaces that enhance their enjoyment and increase their homes’ energy efficiency. This course outlines how retractable screens offer sustainable design solutions for homeowners, architects, and builders. Topics discussed include screen components and how retractable screens offer protection from insects and UV rays and contribute to enhancing a home’s energy efficiency. Various case studies focusing on sustainability are examined.

  • ( ~ 1 hour ) 

    Architectural railing systems offer safety, durability, strength, and design flexibility for a variety of indoor and outdoor applications. This course provides an overview of the important factors that need to be considered when selecting and specifying a railing system for a commercial or residential building project. Topics include materials and finishes, fabrication and installation, and relevant building codes and standards.

  • ( ~ 1 hour ) 

    Resiliency is a growing necessity. It is important to understand the impacts on the built environment resulting from natural and manmade disasters and disturbances and to design for those impacts now. Presented in this course is an overview of the benefits of using steel doors as part of a resilient design strategy for applications requiring resistance to blasts, tornadoes, and ballistics.

  • ( ~ 1 hour ) 

    This course examines key selection criteria for stage flooring, including fixed, sprung, and dynamic systems. It covers permanent and portable solutions, surface materials, and sustainability in material choice and life-cycle management. Case studies highlight the impact of flooring on performance quality, safety, and environmental factors. The course also addresses accessibility, installation, refurbishment, and related manufacturer services.

  • ( ~ 1 hour ) 

    Door systems are an integral part of educational facilities. This course discusses their importance in creating a safe and secure learning environment and explores the different types of doors, frames, and hardware components. Also covered are industry standards, compliance requirements for fire and life safety, accessibility, and security measures that enhance the safety of the door assembly. The course concludes with some practical applications and case studies in educational settings.

  • ( ~ 1 hour ) 

    Fenestration openings are a critical component of a building envelope, especially in present-day sustainable, energy-efficient buildings. Building envelopes play an important role in controlling the movement of heat, bulk water, and water vapor. Designing fenestration openings for buildings that use continuous exterior insulation has a significant role in reducing thermal bridging and thus conserving energy. This course reviews the impact of exterior insulation on fenestration installation design. The course also explores solutions for a wide variety of wall system variations.

  • ( ~ 1 hour, 30 minutes ) 

    Permeable interlocking concrete pavement (PICP) has the ability to create solid, strong surfaces for pedestrians and a range of vehicular uses; it can help maintain a site’s existing natural hydrologic function and reduce the overall impact of development. This course discusses the components of a PICP system and how they work together to manage stormwater in a variety of applications. Also addressed are hydrological and structural factors to consider when designing with PICP and how PICP contributes to sustainable building goals and projects.

  • ( ~ 1 hour ) 

    The planet is currently in a water scarcity crisis, which is significantly affected by toilet water usage. This course examines the current plumbing codes, standards, and regulations that address toilet water usage, the need for and benefits of going beyond current standards, and the goals of a variety of beyond-the-code voluntary standards and rating systems, such as LEED v4 BD+C and ICC 700 National Green Building Standard®. It explains the various types of low-flow and ultra-low-flow toilets, their pros and cons, and their selection criteria. It concludes with a sampling of successful cost- and water-saving installations.

  • ( ~ 1 hour ) 

    The use of sustainable materials and products during building design will become the standard within the construction industry, and environmental product declarations (EPDs) and Health Product Declarations (HPDs) help architects and owners make informed decisions for their projects. Insulated metal panels— a prime example of a sustainable product—are one of the most cost-effective solutions to reduce energy and greenhouse gases.

  • ( ~ 1 hour ) 

    Cellulose insulation has been used successfully by builders and designers for hundreds of years to provide comfort and warmth. Today, builders and designers also consider sustainability principles, climate change, occupant health and wellness issues, energy conservation, and carbon sequestration. Advanced cellulose insulation addresses all those areas as well. This course explains its environmental benefits, including its carbon capture ability, how it improves occupant health and well-being, and its numerous high-performance thermal, acoustic, and fire-resistant attributes.

  • ( ~ 1 hour ) 

    Concrete is an essential part of modern buildings. As net zero energy buildings become more common, it is crucial to find ways to reduce concrete’s carbon footprint without losing the performance characteristics that make it valuable to the building team. This course explains the sources of concrete’s carbon footprint and explores strategies for reducing embodied carbon and operational carbon in precast sandwich wall panels and insulated architectural cladding.

  • ( ~ 1 hour, 15 minutes ) 

    By design, automatic pedestrian doors provide easier, more convenient access than manual doors for a wide variety of building types, and their popularity in commercial design continues to grow. Reviewed in this course are the available options of automatic door solutions, including sliding, swinging, ICC/CCU, and revolving door systems. Also discussed are the code requirements and considerations relating to automatic doors for proper specification.

  • ( ~ 1 hour ) 

    The purpose of this course is to provide an introduction to the use of entrance floor systems in commercial buildings in order to promote a safe and clean environment. The course explains the codes, regulations, and guidelines specifically related to entrance flooring systems for high-traffic entrances in healthcare, education, transportation, corporate, and other commercial settings.

  • ( ~ 1 hour ) 

    One of the more complicated issues today in building science is addressing moisture movement, since moisture can penetrate a building in several different ways and result in material degradation, air quality issues, and failure of the building enclosure. This course examines the ways moisture can enter a structure and discusses the role of different moisture control layers that, when correctly placed and installed, can prevent unwanted moisture infiltration.

  • ( ~ 1 hour ) 

    Slate has been used for centuries as a long-lasting building material, and its natural beauty is unsurpassed. Today, rainscreen cladding systems have been developed to adapt natural slate to new architectural demands for sustainable building design approaches. This course explores the energy efficiency and moisture management benefits of a rainscreen system in combination with the durability and versatility of slate. The different designs and fastening systems are reviewed, and case studies demonstrate the advantages and possibilities for sustainable and beautiful slate projects.

  • ( ~ 1 hour ) 

    Multiwall polycarbonate is an extremely versatile glazing material with high impact strength, excellent thermal insulation, and long-term light transmission. Compared to glass, it is much lighter and easier to handle, offering considerable savings in transportation, labor, and building costs. This course examines how multiwall polycarbonate systems can improve thermal energy efficiency and increase daylighting within a space, enhancing occupant productivity, health, and well-being.

  • ( ~ 1 hour ) 

    Bamboo is a versatile building material that brings warmth and character to indoor applications such as flooring, furniture, and wall and ceiling panels; an innovative process also allows bamboo to be used outdoors in decks, soffits, and siding. This course reviews the material technologies that make bamboo products with reduced environmental impacts and better performance than traditional materials and discusses their potential to meet requirements of the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour, 15 minutes ) 

    There are a multitude of building envelope products used and a variety of methods taken for achieving energy and building code requirements. Understanding the different roles a product plays in the envelope simplifies its design. In this course, we take a look at the code requirements for buildings classified as IBC Types I—IV, paths to achieving compliance, and the number of roles polyisocyanurate insulation plays in meeting these requirements.

  • ( ~ 1 hour ) 

    Identifying, salvaging, and reusing stone and brick is a multifaceted strategy that benefits the environment, economy, and society. It represents a practical and visionary approach to building and design that respects the past, enhances the present, and prepares for a more sustainable future. This course reviews the impact of stone and brick reclamation by examining case studies focusing on modern American architecture and interior and exterior design. The course discusses how material repurposing benefits a society increasingly concerned about environmental sustainability.

  • ( ~ 1 hour ) 

    As urban areas become denser, land values increase, and the demand for space becomes more challenging, developers are seeking alternative, innovative approaches to parking cars that allow a project to proceed while meeting all parking and sustainability requirements. Automated parking systems, parking lifts, and multilevel car stackers provide multiple benefits for developments, car parking operations, and vehicle storage facilities. High-density parking systems can help to maximize ROI with a reduced parking footprint and better building flow; reduce construction costs and operational overheads; and improve safety, security, and sustainability. This course explains the types of high-density parking systems, their sustainable advantages, and design considerations.

  • ( ~ 15 minutes ) 

    Policies targeting the reduction of carbon emissions associated with building products require the disclosure of embodied carbon data to inform those policies and verify whether reduction targets or incentive requirements have been met. This course aims to provide a guide to collecting high-quality embodied carbon data.

Displaying 1 - 25 of 401 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST