Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 1 - 25 of 407 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    In response to a stronger emphasis on natural resources, building efficiencies, and occupant welfare, manufacturers continue to improve design service offerings, product performance, and installation solutions. Fiberglass fenestration meets these demands for residential and commercial design in the built environment. This course explores the performance attributes of fiberglass fenestration, energy efficiency and structural benefits, testing and verification processes, and contributions to healthy building occupancy.

  • ( ~ 1 hour ) 

    Wood-plastic composite cladding offers a pleasing aesthetic and exceptional durability as part of a rainscreen assembly, enhancing the performance and longevity of the building envelope. Presented here are the functions and components of Lstiburek’s “perfect (universal) wall” design and a drained and ventilated rainscreen assembly. The course explores the composition, manufacture, benefits, design possibilities, and installation of wood-plastic composite cladding, as well as compliance with building codes and standards.

  • ( ~ 1 hour, 15 minutes ) 

    Energy codes at the federal, state, and local levels increasingly focus on reducing energy consumption, saving consumers money, and reducing CO2 emissions. Whether new or recently updated, energy codes play an essential role in the buildings we design, build, and ultimately live, work, and play in. This course examines the lighting requirements and provisions of ASHRAE Standard 90.1-2019 and the 2021 International Energy Conservation Code ® , with a focus on plug and lighting control strategies for energy efficiency.

  • ( ~ 1 hour ) 

    Sound control is a critical element in a building’s design. We all think of the walls, ceiling, and floor when discussing sound attenuation, but without the proper acoustic door, the sound-control goals in an acoustic plan may not be met. This course reviews healthy sound levels and how to test and identify target STC ratings. Also discussed are the elements of acoustic door assemblies and how they address fire ratings and ADA compliance, contribute to LEED® certification and green building, and provide security for classified files and electronic data.

  • ( ~ 1 hour ) 

    Incorporating sustainable building materials into design practices is essential for creating environmentally responsible, healthy, and resilient built environments. Thermal modification is a tested and proven chemical-free process for increasing the dimensional stability and long-term performance of wood while preserving its natural beauty. Presented are the thermal modification process, the attributes, applications, and favorable environmental impacts of thermally modified wood, and how thermally modified wood can contribute to achieving certification in LEED® v4.1 Building Design and Construction and Interior Design and Construction, Sustainable SITES Initiative® v2, the WELL Building Standard™ version 2, and the Living Building Challenge (LBC).

  • ( ~ 1 hour ) 

    Color is often used functionally across many design elements; this can also be done with concrete by simply dosing standard concrete mix designs with pigment. Using pigment, concrete can be transformed from a plain, common material into a beautiful, sustainable, and enduring building element. Adding pigments to concrete elevates a project's quality and impact. This course presents basic knowledge of how concrete pigments are manufactured and how they are measured and dispensed to produce the desired color hue and intensity capable of elevating a project to the next level.

  • ( ~ 1 hour ) 

    The acoustical comfort level in the workplace is a key measure of the quality of the indoor environment for building occupants. This course explores key concepts and characteristics of sound, as well as speech intelligibility and privacy and their associated acoustical remedies. Also presented is the use of sound absorbers and diffusers as acoustical solutions to noise problems.

  • ( ~ 1 hour ) 

    No discussion about a material’s sustainability is complete unless it addresses embodied carbon, the carbon dioxide (COâ‚‚) emissions associated with the material over its cradle-to-grave life cycle. Changes made to spray polyurethane foam (SPF) insulation formulations address the impacts of embodied carbon. This course explores the evolution and environmental impacts of SPF blowing agents, the performance benefits of SPF, physical property testing and certifications, and SPF’s potential LEED® v4 contributions. Case studies make evident the performance value of SPF.

  • ( ~ 1 hour ) 

    The 2022 Inflation Reduction Act shines a light on how low-carbon building material selection is one of the keys to reducing greenhouse gas emissions in the US. High-performance, sustainable products and thoughtful assemblies designed with the building life cycle in mind are critical to the future of our sustainable communities. This course provides a look at how low-carbon and sustainability considerations are activated from product to building design. Factors impacting a sustainable building life cycle are discussed to help architects and owners with building performance that meets the design intent not just on paper but also in use.

  • ( ~ 1 hour ) 

    Net zero energy ready buildings are a popular topic in today's world of climate change. This course explores how energy efficiency has expanded toward exterior wall assemblies, where thermal bridging and thermally broken subframing systems are becoming the new norm.

  • ( ~ 1 hour, 15 minutes ) 

    Louvers are an essential part of every HVAC system, facilitating appropriate airflow and inhibiting unwanted penetration by water, snow, or debris through wall openings and into HVAC ductwork. However, they can have other purposes. Their simple design makes them a versatile addition and a unique style option to any project. This course presents the types, components, and applications of louvers, along with the primary specification considerations when selecting a louver solution.

  • ( ~ 1 hour ) 

    People are captivated by birds, and for many, they hold intrinsic value. However, millions of birds collide with glass every year, significantly impacting avian populations. This course examines the ecological services that birds perform that impact human wellness and safety and reviews how bird-friendly glass can mitigate collisions. Various bird-friendly glass examples are also identified, and design guidelines and existing legislation mandating bird-friendly buildings is discussed.

  • ( ~ 1 hour ) 

    Material transparency is a growing initiative in the green and healthy building arena. This course reviews legislation that provides the baseline for healthy and sustainable materials and discusses the limitations of those regulations. It also explores the predominant green building programs and how material transparency can help achieve certification. Learners will leave this course with an understanding of how to access, analyze, and apply material transparency to their projects and leverage initiatives to support a healthier, more sustainable building industry.

  • ( ~ 1 hour ) 

    Rapidly changing trends in our society, such as urbanization and a modern lifestyle, have resulted in the isolation of humans from experiences within nature. Research has shown that the psychological effects of biophilic design on noise perception have a significant influence on the well-being and health of humans. In this course, we review the science of sound, identify the potential problems associated with noise, and introduce the range of acoustic solutions formed from polyethylene terephthalate (PET) felt designed to provide sound-dampening benefits for busy commercial, educational, and healthcare facilities.

  • ( ~ 1 hour ) 

    With the global rise in natural disasters and the increasing need for sustainable environments, resiliency has become a necessity in the design and building industries. This course provides an overview of resilient design, how it relates to building codes and standards, and the role it plays in ensuring the safety and sustainability of the built environment. It examines the role masonry construction plays in meeting resilient design goals and the inherent properties of masonry that make it resilient and provides examples and case studies of resilient design strategies.

  • ( ~ 1 hour ) 

    Often the largest access point in a building, sectional door systems play a significant role in controlling energy costs and supporting sustainable design in residential and commercial buildings. This course explores the specification considerations and the different types of sectional garage doors, as well as their role in enhancing the thermal performance of homes and commercial buildings.

  • ( ~ 1 hour ) 

    Megatrends are long-term global trends that impact societies in complex ways, including design of the built environment. This course examines seven megatrends and how they may inspire kitchen and bath designers to create accessible, diverse, and sustainable solutions to the social and environmental issues our society faces.

  • ( ~ 1 hour ) 

    Building a stronger connection with nature is critical to maintaining human health and well-being. Composite wood decking is a durable, environmentally sustainable product that can help build links with nature through outdoor living spaces. This course examines the different decking options and explains the sustainability benefits of using composite decking and how it can help meet green building requirements. Various design innovations that enhance occupant well-being are also discussed.

  • ( ~ 1 hour ) 

    Designers increasingly focus on creating environments that improve the health, welfare, and productivity of occupants. This includes providing the benefits of daylight, fresh air, and access to the outdoors. This course explores how retractable roofs can extend the use of outdoor spaces year-round by converting them to daylit indoor spaces seasonally or with sudden weather changes. It explains the economic benefits, structure, and operation of various retractable roof types and how they can be customized to suit multiple site sizes and types, including rooftops. The course concludes with a series of case studies.

  • ( ~ 1 hour, 30 minutes ) 

    The principles, tools, and techniques for sustainable community planning (SCP) outlined in Part 1 of this course have evolved into various approaches to the actual implementation of SCP around the world. These approaches have been developed in response to local context and in communities ranging in size and form from large cities to small ecovillages and housing clusters. Part 2 of this course describes a number of these approaches for both land and water and also suggests a means of integrating them into a single, comprehensive planning model. The course concludes with case studies of a range of built sustainable community examples and planning exercises and includes some of the lessons learned.

  • ( ~ 1 hour ) 

    Embodied carbon represents a significant portion of the building industry’s carbon footprint; it is essential to utilize low-carbon construction processes and materials now, before the tipping point of the climate crisis is reached. This course discusses the use of LCAs and EPDs as tools to measure the carbon footprint and environmental impacts of building products and how architects and designers can utilize them to make sustainable choices in the design stages of a project. The course also looks at the growing relevance of EPDs in policies and green building standards, such as the Building Design and Construction rating systems of LEED® v4.1 and the upcoming LEED v5.

  • ( ~ 1 hour ) 

    Birds are an important part of ecosystems, performing many essential ecological functions. Unfortunately, millions of birds are killed every year due to collisions. This course discusses how architects can include bird-safe glass design strategies in their projects to significantly reduce the number of bird collisions and positively impact the environment and biodiversity. It also examines how bird-safe glass may help projects satisfy credit requirements in the LEED® v5 Building Design and Construction rating system.

  • ( ~ 1 hour, 15 minutes ) 

    Critical to concrete waterproofing are the products used in combination to create a system that ensures complete control of moisture migration. Presented here are effective concrete waterproofing technologies and how they improve the durability and lifespan of structures. Discussions include water penetration, system selection, membrane protection, and cementitious waterproofing.

  • ( ~ 1 hour ) 

    Bamboo is a versatile, strong material with a warm aesthetic that suits an array of interior design styles. This course looks at how bamboo is sustainably sourced to produce low-VOC products such as flooring, cladding, and three-ply architectural wall and ceiling panels. Project examples highlight a CNC routing method that produces panels with eye-catching patterns of varying depths and levels of intricacy. The course also examines how bamboo products may apply to several credits and features in the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour, 15 minutes ) 

    The tools, techniques, and approaches to sustainable community planning (SCP) have evolved substantially in the last few decades, turning it from an abstract notion into a most comprehensive and beneficial planning approach. Part 1 of this two-part course examines the basic principles that these tools and approaches are based on, the local and global issues that they must address to be effective, and the nature and structure of the tools themselves. The review includes numerous links to the sources of these tools.

Displaying 1 - 25 of 407 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST