Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 1 - 25 of 400 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Stormwater management is a critical component in any municipality to retain and infiltrate increased runoff volumes and flow rates from developed land that creates increased impervious cover (roofs and pavements). The course discusses the hydrologic and structural design fundamentals of permeable interlocking concrete pavement (PICP) and why it is an excellent choice to help meet stormwater management goals. Discussions include the benefits of using PICP, components of PICP, design and construction considerations and how use of PICP can help earn LEED® credits.

  • ( ~ 1 hour ) 

    Energy conservation and occupant well-being, comfort, and productivity are issues of increasing concern in building design. This course illustrates how radiant heating and cooling systems address these issues positively and efficiently. It encompasses the various types of systems available and how they can contribute to credit requirements in the LEED® v4.1 Building Design and Construction rating system and the WELL Building Standard™ version 2. System workings, design, aesthetic considerations, advantages, testing and measuring protocols, and installation procedures are reviewed, and the course concludes with several installation examples.

  • ( ~ 1 hour ) 

    High-performance coatings are a necessity when it comes to protecting building exteriors and restoring them after harsh weathering and UV degradation; the right coatings prolong a building exterior’s life span and divert materials from landfills. New PVDF coating systems provide superior protection while satisfying aesthetic and environmental considerations. Their various characteristics and benefits are explored, and application methods are discussed.

  • ( ~ 1 hour, 30 minutes ) 

    The principles, tools, and techniques for sustainable community planning (SCP) outlined in Part 1 of this course have evolved into various approaches to the actual implementation of SCP around the world. These approaches have been developed in response to local context and in communities ranging in size and form from large cities to small ecovillages and housing clusters. Part 2 of this course describes a number of these approaches for both land and water and also suggests a means of integrating them into a single, comprehensive planning model. The course concludes with case studies of a range of built sustainable community examples and planning exercises and includes some of the lessons learned.

  • ( ~ 1 hour, 15 minutes ) 

    The need to evaluate thermal bridging in a building’s design and performance has become more prevalent because of the increasing requirements for more energy-efficient buildings. This course provides an introduction to thermal bridging, energy code requirements, and the use of thermal break solutions designed to improve energy efficiency in the building envelope.

  • ( ~ 1 hour ) 

    The green building movement has been fueled by a variety of factors, including effects on the environment and human health. This course looks closely at high-pressure laminate (HPL), which covers horizontal and vertical surfaces in many different types of commercial, institutional, and residential buildings. As part of a variety of other products, such as cabinetry, countertops, wall coverings, and furnishings, it can contribute directly to sustainable building design solutions. HPL products can be specified that meet accepted standards for minimizing or reducing environmental and health impacts. All these can be documented to assist in green building certification programs such as LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems, the WELL Building Standard™ version 2 (WELL v2™), and others.

  • ( ~ 1 hour, 15 minutes ) 

    White roofs made of PVC (vinyl) can reflect three-quarters or more of the sun's rays and emit 70% or more of the solar radiation absorbed by the building envelope. Despite protecting and keeping buildings cool in all climates around the world for decades, misconceptions about the energy impact of cool roofs still exist. This course uses the fundamental science behind cool roofs to address alleged issues concerning the performance of cool roof products.

  • ( ~ 1 hour, 15 minutes ) 

    Concrete is one of the most widely used building materials throughout the world, and as such, it is in everyone’s best interest to consider more sustainable options. This course provides an overview of the properties of slag cement. Discussion topics include benefits, effects on plastics and hardened concrete, environmental profile including life cycle analysis (LCA) and environmental product declarations (EPDs), and various slag cement applications.

  • ( ~ 1 hour, 15 minutes ) 

    There are a multitude of building envelope products used and a variety of methods taken for achieving energy and building code requirements. Understanding the different roles a product plays in the envelope simplifies its design. In this course, we take a look at the code requirements for buildings classified as IBC Types I—IV, paths to achieving compliance, and the number of roles polyisocyanurate insulation plays in meeting these requirements.

  • ( ~ 1 hour ) 

    As impervious land cover increases, so does the need for stormwater management. Concrete grid pavements provide increased infiltration rates, positively affecting runoff flow while decreasing erosion. This course introduces the range of grid pavement and erosion control applications and provides design and construction guidelines. Environmental performance is defined via conclusions from several research projects. Concrete grid pavements require minimal maintenance when properly designed and installed in appropriate applications. This course also includes an overview of how concrete grid paving units can be used to meet a number of LEED® v4.1 BD+C credit requirements.

  • ( ~ 1 hour ) 

    Air barriers improve the health and comfort of building occupants, improve energy efficiency, and prevent premature degradation of materials, increasing the structure’s life cycle. A successful air and moisture barrier system means under-slab, below-grade, and above-grade systems must work together to provide a continuous barrier. This course looks at above-grade air barrier systems and their types and components. Continuity and compatibility, specification, and installation challenges are also considered.

  • ( ~ 1 hour ) 

    A naturally occurring radioactive gas, radon is a silent danger to our health. Colorless and odorless, it enters homes and structures through openings in the foundation and below-grade walls, becoming trapped in basements and other poorly ventilated areas. This course looks at methods of controlling radon, how it is addressed in building codes, the advantages of closed-cell spray polyurethane foam (ccSPF) over other insulation materials, and proper installation techniques.

  • ( ~ 1 hour ) 

    The facade is one of the most significant contributors to the energy consumption and comfort parameters of any building. This course explores high-performance building envelopes and the use of advanced insulated metal panel systems featuring integrated daylighting and ventilation components that combine to provide weathertightness and maximum thermal performance.

  • ( ~ 1 hour ) 

    Solid surface material is a durable and sustainable solution for custom architectural solutions. Explore the extensive design possibilities of this nonporous, thermoformable material and review key performance characteristics and fabrication guidelines.

  • ( ~ 1 hour ) 

    Green facades can contribute to building energy efficiency, durability, aesthetic value, sustainability, and cost effectiveness in the performance of ecological system services. This course examines the considerations required for successful green facade installations and includes discussions on system selection, design, plant selection, maintenance, and client/owner education.

  • ( ~ 1 hour ) 

    This course examines key selection criteria for stage flooring, including fixed, sprung, and dynamic systems. It covers permanent and portable solutions, surface materials, and sustainability in material choice and life-cycle management. Case studies highlight the impact of flooring on performance quality, safety, and environmental factors. The course also addresses accessibility, installation, refurbishment, and related manufacturer services.

  • ( ~ 1 hour ) 

    Adding small pockets of luxury to a home has become commonplace in spaces like the kitchen and bathroom. Personal saunas are a natural extension to this way of thinking, supporting an owner’s health and relaxation. This course looks at the wide variety of heat bathing options: sauna, infrared, and steam, with a focus on how to both select a product and implement heat bathing in residential and commercial projects.

  • ( ~ 1 hour ) 

    While natural wood has traditionally been viewed as an ideal material for decking boards and tiles, wood-plastic composite (WPC) has emerged as a durable, easy-to-maintain, and sustainable alternative. This course provides insights into the advantages of composite decking, especially fully capped products, and explores topics including its environmental benefits; contribution to occupant wellness and safety; resistance to fading, staining, and other potential defects that decking experiences; various applications; and attractive aesthetics.

  • ( ~ 1 hour ) 

    Water management is a complex and significant process affecting all levels of planning and building design and is tasked with solving a number of new and emerging issues. This course reviews current stormwater and wastewater management issues and current practices and then takes a look at a number of new and emerging issues that water management plans need to address.

  • ( ~ 1 hour ) 

    Elevators are integral to accessible, smooth, and efficient operations in many applications. For low-rise buildings, hydraulic elevators or gearless machine room-less (MRL) elevators are most common; this course compares the two in terms of sustainability and cost. Also presented are the history of the elevator, types of elevators suitable for installation in a range of buildings, the distinctions between proprietary and nonproprietary elevator systems, and recommendations on how to specify a nonproprietary system to maximize its long-term benefits.

  • ( ~ 1 hour, 30 minutes ) 

    The key to an energy-efficient metal building is the implementation of a continuous insulation system that virtually eliminates thermal bridging and prevents condensation. This course discusses how using thermal spacer blocks and metal building insulation in the building envelope increases energy performance, protects against condensation, and meets stringent energy code requirements.

  • ( ~ 1 hour ) 

    The availability of parking and the time it takes to park a vehicle are major challenges when designing a new development. Parking garages typically require big volumes and are not efficient with land use. Automated parking can practically reduce parking space, while providing the same (sometimes more) number of parking stalls as a conventional garage. It also improves the user experience, providing a valet parking experience, just without the valet.

  • ( ~ 1 hour ) 

    Cleanliness and sanitation are important aspects of buildings and businesses, especially in restrooms. Users want environments where they don’t have to worry about picking up germs while owners desire solutions that are safe, attractive, and cost effective. Smart, connected fixtures can leverage sensor technology to optimize user experiences while also streamlining the management of building facilities, conserving water, and providing a hygienic, touchless experience for users. 

  • ( ~ 1 hour, 15 minutes ) 

    Specifying door products that are durable enough to withstand the rigorous demands of high-traffic applications in the healthcare and hospitality industries is crucial to the long-term success of each installation. This course reviews traditional doorway materials and doorway protection options, and provides design solutions that utilize engineered polyethylene terephthalate (PETG) components that extend the life of the door assembly and minimize health and safety issues for the building occupants.

  • ( ~ 1 hour ) 

    As the population grows, urban centers are becoming denser and land more valuable. Architects are looking for parking solutions that provide space-saving benefits to high-density residential and commercial developments. This course discusses the performance of mechanical parking systems, also known as automated parking or high-density parking (HDP), and how they reduce space required for vehicle storage, increase safety, and minimize the environmental impact of parking vehicles. Specifications and installation are also examined.

Displaying 1 - 25 of 400 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST