Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 1 - 25 of 400 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Structural laminated decking allows the beauty of the wood structure to be exposed, creating a unique architectural experience for its occupants. Aesthetics, strength, and durability are combined in one engineered product. Structural laminated wood decking is an environmentally sustainable and cost-effective alternative to solid timber and other roof systems. This course discusses the characteristics of laminated wood decking and reviews recommended design, specification, and installation practices.

  • ( ~ 1 hour ) 

    This course aims to educate learners about the chemistry of spray-applied polyurethane foam (SPF), its various applications in the construction industry, safe handling and installation, and its contribution to sustainable design. The advantages of using SPF are highlighted in terms of its benefits to energy conservation and fire safety. Its role as a high-performance air barrier that satisfies code and LEED® criteria and complies with various standards is also discussed.

  • ( ~ 1 hour, 15 minutes ) 

    Rubber has been recycled for more than a century and used in recycled rubber flooring for over 65 years. Over this time, it has been proven to be a durable and flexible product that improves numerous aspects of the built environment while benefiting the natural environment. This course examines the sustainability attributes of recycled rubber flooring, how rubber is recycled, how it is used to make flooring, its health and safety benefits, and where to use and not use the product. The course also includes an overview of how recycled rubber flooring can be used to meet a number of USGBC’s LEED® v4 BD+C and WELL Building Standard® v2 credit requirements.

  • ( ~ 1 hour, 15 minutes ) 

    Energy codes at the federal, state, and local levels increasingly focus on reducing energy consumption, saving consumers money, and reducing CO2 emissions. Whether new or recently updated, energy codes play an essential role in the buildings we design, build, and ultimately live, work, and play in. This course examines the lighting requirements and provisions of ASHRAE Standard 90.1-2019 and the 2021 International Energy Conservation Code ® , with a focus on plug and lighting control strategies for energy efficiency.

  • ( ~ 1 hour ) 

    Vinyl is suitable for many building materials and is often the best selection when durability, aesthetics, and value are vital. This course is intended to help designers and specifiers make the most informed decisions about vinyl product selection. It describes the realities and improvements of today’s vinyl product manufacturing, discusses the latest information about the safety and sustainability of vinyl products, and presents a verification standard for responsible vinyl manufacturing.

  • ( ~ 1 hour, 15 minutes ) 

    Synthetic (artificial) grass or turf has improved steadily since its first installation half a century ago, and it is now a sophisticated surfacing system that can be customized to suit specific purposes. This course reviews that development and then focuses on the specifics of synthetic grass suitable for use on playgrounds. This focus includes a detailed examination of its construction, installation, and maintenance, and a number of sample installations.

  • ( ~ 1 hour ) 

    The facade is one of the most significant contributors to the energy consumption and comfort parameters of any building. This course explores high-performance building envelopes and the use of advanced insulated metal panel systems featuring integrated daylighting and ventilation components that combine to provide weathertightness and maximum thermal performance.

  • ( ~ 1 hour ) 

    Identifying, salvaging, and reusing stone and brick is a multifaceted strategy that benefits the environment, economy, and society. It represents a practical and visionary approach to building and design that respects the past, enhances the present, and prepares for a more sustainable future. This course reviews the impact of stone and brick reclamation by examining case studies focusing on modern American architecture and interior and exterior design. The course discusses how material repurposing benefits a society increasingly concerned about environmental sustainability.

  • ( ~ 1 hour ) 

    Good acoustic and aesthetic environments are important to the health, safety, comfort, satisfaction, productivity, and general well-being of all building users. This course outlines the benefits of and methodologies for simultaneously creating both with wall and ceiling acoustic treatments. The highly illustrated course includes detailed descriptions of the many acoustic wall and ceiling treatment options available, as well as sample installations.

  • ( ~ 1 hour ) 

    The United Nations has set 2030 as the deadline for member nations to achieve the 17 Sustainable Development Goals. The construction industry has set complementary goals, including the AIA 2030 Commitment to reach net zero emissions in the built environment by 2030. This course discusses how circular economy building products are necessary to achieve sustainable design goals and presents the case study of Kohler WasteLAB, a small manufacturing business within Kohler Company that creates beautiful products for the home from waste.

  • ( ~ 1 hour ) 

    Door systems are an integral part of educational facilities. This course discusses their importance in creating a safe and secure learning environment and explores the different types of doors, frames, and hardware components. Also covered are industry standards, compliance requirements for fire and life safety, accessibility, and security measures that enhance the safety of the door assembly. The course concludes with some practical applications and case studies in educational settings.

  • ( ~ 1 hour ) 

    Designers, building users, and managers are increasingly focused on building and occupant health as well as energy conservation. This course explores how mixed-mode (hybrid) ventilation systems address all these issues by improving the ratio of fresh air introduced into buildings while reducing energy needs and costs. It describes the benefits, elements, and workings of these systems and provides design guidance and illustrative case studies.

  • ( ~ 1 hour ) 

    Many communities face challenges related to the presence of harmful pollutants in their drinking water supply. This course examines the issues associated with these contaminants, focusing on lead, per- and polyfluoroalkyl substances (PFAS), and microplastics. It also discusses the government’s response to providing clean, safe water and innovations in point-of-use filtration systems designed to reduce toxic substances in drinking water and minimize the environmental impact of disposable plastic water bottles.

  • ( ~ 1 hour, 15 minutes ) 

    Le besoin d’évaluer les ponts thermiques dans la conception et le rendement d’un bâtiment a gagné en importance en raison des exigences grandissantes en matière d’efficience énergétique des bâtiments. Ce cours sert d’introduction aux ponts thermiques, aux exigences du code de l’énergie et à l’usage de barrières thermiques conçues pour améliorer l’efficience énergétique de l’enveloppe du bâtiment.

  • ( ~ 1 hour, 15 minutes ) 

    Outdoor shelters not only provide protection from the elements but also add visual interest to outdoor public spaces, and advances in shelter design are changing the way the recreational landscape is defined. This course looks at current capabilities in shelter design, compares pre-engineered to site-built shelters, and focuses on the advantages of using a manufacturer who offers design and engineering services. Sustainable aspects of shelter design are also discussed.

  • ( ~ 1 hour ) 

    This course introduces the learner to the benefits and design advantages of porcelain surface material for both indoor and outdoor use in residential and commercial projects. Since it is a relatively new material in the US, we will review its components and manufacture and how they result in a product with exceptional characteristics for human health and durability. We'll also show and discuss indoor and outdoor applications, the variations available for vertical and horizontal applications, and the many design options. Finally, we’ll help the learner understand what is needed to design with this material and how to work with a fabricator.

  • ( ~ 1 hour ) 

    A naturally occurring radioactive gas, radon is a silent danger to our health. Colorless and odorless, it enters homes and structures through openings in the foundation and below-grade walls, becoming trapped in basements and other poorly ventilated areas. This course looks at methods of controlling radon, how it is addressed in building codes, the advantages of closed-cell spray polyurethane foam (ccSPF) over other insulation materials, and proper installation techniques.

  • ( ~ 1 hour ) 

    With buildings accounting for nearly 40% of global carbon emissions, the push for greener construction has never been more critical. Sustainable building initiatives are taking center stage as the world strives to reduce emissions. The industry is moving toward adaptive and net-zero buildings, emphasizing energy efficiency and environmental awareness across sectors. Broaden your expertise in energy-efficient and adaptive building design by exploring the role of high-volume, low-speed (HVLS) fans in enhancing thermal comfort. This course shows why and how to specify HVLS fans as part of initial airflow designs to support sustainable building goals. Learners will discover how to optimize multiuse spaces for greater comfort through effective air distribution, temperature control strategies, and energy savings. By the end of the course, learners will have a solid understanding of HVAC efficiency challenges and solutions that align with LEED® v5 Building Design and Construction (BD+C), LEED v5 Interior Design and Construction (ID+C), WELL Building Standard™ version 2, ASHRAE, and OSHA standards. This course equips architects and engineers with practical strategies for integrating sustainable, cost-effective airflow solutions into their designs.

  • ( ~ 1 hour ) 

    Water is one of our most valuable resources, yet many states suffer water shortages due to preventable problems such as overuse and leakages. This course discusses the increased need for water conservation and examines the requirements in CALGreen and the LEED® v4.1, Green Globes®, and BREEAM In-Use green building rating systems. The EPA’s WaterSense® initiative is also discussed, along with case studies explaining the benefits of concealed toilet systems and their contribution to water conservation. This course is one of two identical courses titled Water Conservation: Initiatives and Standards . You will receive credit for taking only one of these courses.

  • ( ~ 1 hour ) 

    As urban development encroaches upon natural habitats, human—wildlife conflicts, particularly those involving bears, have become more frequent and dangerous. This course will equip architects and designers with the knowledge and tools to mitigate bear—human conflicts through wildlife-resistant waste management and food storage systems. The course examines how bears become conditioned to human food and how this impacts humans, bears, and the environment. Learners will gain insights into how community strategies and innovative product designs can foster safer, more sustainable human—wildlife coexistence.

  • ( ~ 1 hour ) 

    Specialty door and frame assemblies have been developed that are designed specifically for the built healthcare environment where performance criteria are critical. Reviewed in this course are specialty door and frame assemblies that meet the challenges of infection prevention, building cleanliness, patient privacy, and increased security, as well as containment of radio wave and radiation interference in hospitals and clinics.

  • ( ~ 1 hour, 15 minutes ) 

    This course provides an in-depth overview of recycling and waste diversion programs, focusing on effective planning, stakeholder engagement, and strategic bin placement. It offers practical guidance on selecting bins, designing consistent signage, and using communication strategies to improve user compliance. The course also explores additional methods to reduce waste at the source and covers techniques for continuous monitoring and adaptation to achieve long-term sustainability goals.

  • ( ~ 1 hour ) 

    Throughout history, concrete mixes and carved natural stone have combined to create substance, beauty, and longevity in our architecture. Glass fiber reinforced concrete (GFRC) was created to ensure that the attributes of concrete and stone continue to be enjoyed but with efficiency in the application that is expected in today's world of design. This course covers the creation of GFRC, its components, fabrication, applications, and design capabilities. It compares GFRC to other types of architectural concrete and presents GFRC performance and sustainable design advantages.

  • ( ~ 1 hour ) 

    This course delves into the increasing and expanding role of outdoor living and its importance in households, businesses, and communities. Reviewed are the styles and specification considerations of aluminum shading products. The focus is pergolas and cabanas made with dual-walled aluminum louvers that seal completely to block rain and snow and complement any architectural style.

  • ( ~ 1 hour ) 

    Roofing is one of the most common renovation projects on commercial buildings. Upgrading a roof assembly to meet current building standards provides an opportunity to save energy and maintain the necessary fire and structural performance. This course reviews the code requirements for commercial reroofing and discusses how reroofing can improve a building’s energy efficiency.

Displaying 1 - 25 of 400 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST