Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 1 - 25 of 402 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Architectural glazing systems are vital to building performance, influencing energy efficiency, structural integrity, and aesthetics. This course compares storefront and curtain wall systems, explores performance optimization strategies, and examines their contribution to sustainability. Participants will gain the technical knowledge needed to develop effective product specifications.

  • ( ~ 1 hour ) 

    The Builders Hardware Manufacturers Association (BHMA®) is the only organization accredited by the American National ‎Standards Institute (ANSI) to develop and maintain builders hardware ‎standards with cycling, operational, strength, security, and finish test requirements. This course explores the performance standards and the certification program related to commercial architectural hardware.

  • ( ~ 1 hour ) 

    The purpose of this course is to provide an introduction to the use of entrance floor systems in commercial buildings in order to promote a safe and clean environment. The course explains the codes, regulations, and guidelines specifically related to entrance flooring systems for high-traffic entrances in healthcare, education, transportation, corporate, and other commercial settings.

  • ( ~ 1 hour, 15 minutes ) 

    Surface preparation is critical for high-performing, long-lasting flooring. Learn about the latest innovations and installation techniques in surface preparation that prevent floor damage while mitigating moisture and noise.

  • ( ~ 1 hour ) 

    Elevators are integral to accessible, smooth, and efficient operations in many applications. For low-rise buildings, hydraulic elevators or gearless machine room-less (MRL) elevators are most common; this course compares the two in terms of sustainability and cost. Also presented are the history of the elevator, types of elevators suitable for installation in a range of buildings, the distinctions between proprietary and nonproprietary elevator systems, and recommendations on how to specify a nonproprietary system to maximize its long-term benefits.

  • ( ~ 1 hour ) 

    Water is one of our most valuable resources, yet many states suffer water shortages due to preventable problems such as overuse and leakages. This course discusses the increased need for water conservation and examines the requirements in CALGreen and the LEED® v4.1, Green Globes®, and BREEAM In-Use green building rating systems. The EPA’s WaterSense® initiative is also discussed, along with case studies explaining the benefits of concealed toilet systems and their contribution to water conservation. This course is one of two identical courses titled Water Conservation: Initiatives and Standards . You will receive credit for taking only one of these courses.

  • ( ~ 1 hour, 15 minutes ) 

    Energy codes at the federal, state, and local levels increasingly focus on reducing energy consumption, saving consumers money, and reducing CO2 emissions. Whether new or recently updated, energy codes play an essential role in the buildings we design, build, and ultimately live, work, and play in. This course examines the lighting requirements and provisions of ASHRAE Standard 90.1-2019 and the 2021 International Energy Conservation Code ® , with a focus on plug and lighting control strategies for energy efficiency.

  • ( ~ 1 hour ) 

    Homeowners are looking for alternatives to traditional cladding materials that are affordable and long lasting and require little or no upkeep. Advances in technology and manufacturing techniques mean cellular PVC cladding products can meet all these requirements without sacrificing aesthetics. This course reviews the benefits of cellular PVC as a cladding material and discusses how cellular PVC rebutted and rejointed (R&R) prefinished shingles can provide the look and feel of wood shingles with an extended level of durability and low maintenance.

  • ( ~ 1 hour ) 

    Concrete is a key construction material in modern society. As the foundation for much of what we make, it has a substantial environmental impact, mainly reflected in its carbon footprint. This course introduces best practices to make concrete more sustainable and lower the embodied carbon in concrete with its use and application.

  • ( ~ 1 hour ) 

    It is an expectation that today’s buildings have to be more than just aesthetically pleasing: they have to provide measurable environmental benefits. This course outlines how insulated concrete forms (ICFs) help meet sustainable design objectives and examines the advantages that ICFs and ICF technology have over conventional construction materials for building envelopes in all building types.

  • ( ~ 1 hour ) 

    Automated-shading systems are designed to maximize natural daylight, increase building energy efficiency, and ensure occupants have a comfortable environment with views to the outside. This course will explain how an automated shading system predicts, monitors, and responds to the daily microclimate surrounding a building to effectively manage daylight, solar-heat gain, occupant comfort levels, and energy use demands.

  • ( ~ 1 hour ) 

    No discussion about a material’s sustainability is complete unless it addresses embodied carbon, the carbon dioxide (COâ‚‚) emissions associated with the material over its cradle-to-grave life cycle. Changes made to spray polyurethane foam (SPF) insulation formulations address the impacts of embodied carbon. This course explores the evolution and environmental impacts of SPF blowing agents, the performance benefits of SPF, physical property testing and certifications, and SPF’s potential LEED® v4 contributions. Case studies make evident the performance value of SPF.

  • ( ~ 1 hour ) 

    Designing to accommodate thermal movement is just one of the many critical details for the long-term success of a metal roof installation. This course covers the design and specification considerations and architectural details that impact project requirements, as well as the components and the energy-efficient features of metal roofing assemblies.

  • ( ~ 1 hour ) 

    Many communities face challenges related to the presence of harmful pollutants in their drinking water supply. This course examines the issues associated with these contaminants, focusing on lead, per- and polyfluoroalkyl substances (PFAS), and microplastics. It also discusses the government’s response to providing clean, safe water and innovations in point-of-use filtration systems designed to reduce toxic substances in drinking water and minimize the environmental impact of disposable plastic water bottles.

  • ( ~ 1 hour ) 

    Structural HDPE plastic lumber offers strength, durability, and design versatility and is a sustainable alternative to traditional building materials. This course examines the types of structural HDPE plastic lumber and their manufacturing processes and provides technical information on performance attributes, suitable applications, installation considerations, and design guidelines. Comparisons are made to wood and wood-plastic composite lumber. Also presented is how recycled HDPE plastic lumber may help meet credit requirements in the Sustainable SITES Initiative® (SITES® v2) and LEED® v4.1 Building Design and Construction (BD+C) and Residential BD+C rating systems. Case studies demonstrate the exemplary performance of structural HDPE plastic lumber in aggressive environmental conditions.

  • ( ~ 1 hour ) 

    One of the more complicated issues today in building science is addressing moisture movement, since moisture can penetrate a building in several different ways and result in material degradation, air quality issues, and failure of the building enclosure. This course examines the ways moisture can enter a structure and discusses the role of different moisture control layers that, when correctly placed and installed, can prevent unwanted moisture infiltration.

  • ( ~ 1 hour ) 

    The availability of parking and the time it takes to park a vehicle are major challenges when designing a new development. Parking garages typically require big volumes and are not efficient with land use. Automated parking can practically reduce parking space, while providing the same (sometimes more) number of parking stalls as a conventional garage. It also improves the user experience, providing a valet parking experience, just without the valet.

  • ( ~ 1 hour ) 

    This course explores design strategies for tailoring elevator interiors to project-specific needs, compares original equipment manufacturer (OEM) elevator interiors, bespoke elevator interiors, and configurable elevator interior systems (CEISs), and examines best practices for specifying CEISs to enhance safety, performance, and visual continuity.

  • ( ~ 1 hour ) 

    Buildings need protection from cyber as well as physical threats. Building shielding offers several architectural solutions that contribute to the security of both building occupants and wireless systems. These solutions also help reduce unwanted solar heat and glare while providing protection from the elements and people seeking to cause harm. This course presents the security and performance benefits of shielding technology that can improve wireless performance, energy efficiency, and occupant comfort, satisfaction, and safety

  • ( ~ 1 hour, 15 minutes ) 

    Contrast therapy, the controlled use of heat and cold, has supported health, recovery, and wellness practices for centuries. This course examines the science, design, and construction of modern contrast therapy environments, including saunas, steam rooms, and cold rooms. It explains how temperature control, material specification, and system design influence safety, hygiene, and performance. The course also addresses how prefabricated systems improve installation efficiency, durability, and indoor environmental quality.

  • ( ~ 1 hour ) 

    Natural and artificial lighting surrounds us at all times. Light helps us to work safely, enhances design, creates atmosphere, and influences our well-being. This course discusses the circadian rhythm, occupant health, and lighting color temperature, and it examines LED lighting requirements and options for lighting-integrated bathroom mirrors and cabinets.

  • ( ~ 1 hour ) 

    As the architectural industry shifts toward more sustainable, low-maintenance materials, aluminum has emerged as a preferred choice for its eco-friendly properties, design versatility, and long-lasting performance. This course explores its manufacturing and installation processes, durable finishes, and wide-ranging applications, including cladding, soffits, battens, fencing, gates, screens, and pergolas. Discover how aluminum helps architects elevate design while meeting sustainability goals, particularly those of the LEED® v4.1 Building Design and Construction green building rating system.

  • ( ~ 1 hour ) 

    While the bathroom was once a strictly utilitarian space, a growing trend among luxury consumers is to create a custom, spa-like wellness retreat right in the home. Surveys find that luxury consumers value functional and design excellence, uniqueness that reflects a creative side, and exceptional quality and value. This course examines the shower products available that help to create a personalized, multisensory wellness experience with beautifully designed pieces that meet water efficiency standards.

  • ( ~ 1 hour, 15 minutes ) 

    Concrete is one of the most widely used building materials throughout the world, and as such, it is in everyone’s best interest to consider more sustainable options. This course provides an overview of the properties of slag cement. Discussion topics include benefits, effects on plastics and hardened concrete, environmental profile including life cycle analysis (LCA) and environmental product declarations (EPDs), and various slag cement applications.

  • ( ~ 1 hour ) 

    Natural fibers have been used for over 2,000 years as a method to strengthen building materials. Cellulose fiber provides an excellent alternative to traditional secondary reinforcement, reducing plastic shrinkage cracks and improving durability, impact resistance, shatter resistance, and freeze/thaw resistance without compromising the appearance or finishability of a concrete surface. This course covers the evolution of fiber, its benefits, and why it is a sustainable material.

Displaying 1 - 25 of 402 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST