Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 51 - 75 of 392 results.

FIRST PREV [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 15 minutes ) 

    Policies targeting the reduction of carbon emissions associated with building products require the disclosure of embodied carbon data to inform those policies and verify whether reduction targets or incentive requirements have been met. This course aims to provide a guide to collecting high-quality embodied carbon data.

  • ( ~ 1 hour ) 

    Modern interior spaces often feature open areas and hard surfaces. What should be comfortable rooms in these spaces can become unpleasant from noise and echo or sound reverberation. This course discusses how melamine foam can be used to improve the sound quality in a space. The different options for melamine foam products are discussed along with their installation methods. This course also provides an overview of the sustainability features of sound-absorbing melamine foam.

  • ( ~ 1 hour ) 

    Through sustainable management, the forests of New England have had a remarkable comeback since the 1830s, with eastern white pine being the most represented softwood in these forests. This light, yet strong wood species has been used for generations and today, meets the requirements of a renewable and sustainable building material. This course reviews eastern white pine’s contribution to sustainability, its grading rules, wood products, and many applications.

  • ( ~ 1 hour ) 

    Communities need accessible, versatile surfaces for play and relaxation for people of all ages and abilities. Modern landscape synthetic turf options are specifically formulated for public recreation spaces frequented by adults, children, and pets. This course reviews the health benefits of being outdoors, the history and fabrication of synthetic turf, the design considerations for various recreation applications, and synthetic turf’s performance and sustainability characteristics.

  • ( ~ 1 hour ) 

    This presentation celebrates the value of incorporating artisanal, handcrafted fixtures and furnishings into a building’s design. Not only are these products unique, functional, and aesthetically appealing, but they can also establish a sense of connection with their maker. Many artisanal, handcrafted products are made using traditional techniques that have been passed down over time, often from generation to generation. And because many of these products are made from sustainable, recycled, or reclaimed materials that are locally available, they can help reduce the environmental impact of a new build. This course illustrates how sourcing artisan-made products for their projects can allow designers and builders to effect social, economic, and environmental change.

  • ( ~ 1 hour, 15 minutes ) 

    Insulation can help increase overall energy efficiency, minimize the spread of fire, manage risks associated with moisture and mold, and improve occupant comfort. Choosing the right insulation and putting it in the right location is becoming one of the most important decisions in design, construction, and retrofit. Reviewed in this course are the features, benefits, and design and installation considerations related to mineral wool continuous insulation.

  • ( ~ 1 hour ) 

    Growing and concentrating populations, shifting weather patterns, increasing frequency and ferocity of storm events, disappearing water supplies, and rising costs have made providing potable water and managing other water-related issues increasingly difficult for many communities. This course explores their many water issues and how they adapt their management practices to address constantly evolving water conditions.

  • ( ~ 1 hour, 15 minutes ) 

    Uncorrected thermal bridging can account for 20—70% of heat flow through a building's envelope. Improving details to mitigate both point and linear thermal bridges will significantly improve energy performance. This course reviews types of thermal bridges, examines how they appear in codes and standards, and explores some mitigation concepts and principles. Calculation methods to account for thermal bridging in your projects are introduced, and a sample design project is used to demonstrate code compliance.

  • ( ~ 2 hours ) 

    This presentation focuses on four major areas of managing a LEED project team from the general contractor’s perspective. It includes an overview of the integrative process; identifying potential members and responsibilities of the project team and discussing how to implement that process in detail; investigating why the role of a LEED project manager is critical to the success of the project; ideas based on personal experience; and examples of past projects with best practice recommendations for a practical approach.

     In order to download this course, a USD $70.00 fee must be paid.

  • ( ~ 1 hour ) 

    Water is one of our most valuable resources, yet many states suffer water shortages due to preventable problems such as overuse and leakages. This course discusses the increased need for water conservation and examines the requirements in CALGreen and the LEED® v4.1, Green Globes®, and BREEAM In-Use green building rating systems. The EPA’s WaterSense® initiative is also discussed, along with case studies explaining the benefits of concealed toilet systems and their contribution to water conservation. This course is one of two identical courses titled Water Conservation: Initiatives and Standards . You will receive credit for taking only one of these courses.

  • ( ~ 1 hour ) 

    Urban warming negatively impacts human health and quality of life, energy use, air quality, social equity, and economic prosperity. This course describes how solar reflective cool roof and wall materials help protect individuals and communities from the impacts of extreme heat and discusses the factors that influence energy savings and performance. The course also notes various climate resilience initiatives, green building programs, and energy codes that require or promote the use of cool roofs or walls and concludes by explaining the important role of third-party product ratings and the educational resources available online.

  • ( ~ 1 hour ) 

    Thermoplastic single-ply roofing systems have over a half century of proven performance. This course outlines their history and the various types of membranes that have been developed and identifies the individual attributes and benefits of each type. This highly illustrated course also discusses the cooling benefits of white and green roofs, the numerous single-ply attachment and warranty options, and descriptions of sample installations.

  • ( ~ 1 hour ) 

    Rolling doors are used in heavy-duty, medium-duty, and light-duty applications for a wide range of commercial, industrial, and construction environments. This course provides a review of the features, components, options, and applications of various types of commercial rolling door products.

  • ( ~ 1 hour ) 

    Since its introduction in the early 20th century, high-strength fiber cement has proven to be an affordable, sturdy construction material. Technological advances in recent years have increased its versatility in terms of color range and usage for ventilated rainscreen facades. This course examines what high-strength fiber cement is and how it can improve the structural sustainability of buildings and enhance creative freedom in design.

  • ( ~ 1 hour ) 

    Professional sports stadiums form large complexes with enormous impacts on the environment and local communities. Owners, architects, and operations managers can use this influence to generate a net positive effect on people, the natural environment, and the bottom line. In this video, the executives and consultants involved in the design and daily operation of Gillette Stadium and Mercedes-Benz Stadium discuss the challenges and opportunities of sustainable stadium design. Topics discussed include district energy generation, gray water treatment, evaluation and implementation of new technologies, partnering with local utilities, cost recovery, profitability, and community health.

  • ( ~ 1 hour ) 

    It is an expectation that today’s buildings have to be more than just aesthetically pleasing: they have to provide measurable environmental benefits. This course outlines how insulated concrete forms (ICFs) help meet sustainable design objectives and examines the advantages that ICFs and ICF technology have over conventional construction materials for building envelopes in all building types.

  • ( ~ 1 hour ) 

    Dive into the intersection of design excellence and environmental responsibility with this comprehensive course on TFL decorative panels. Explore the intrinsic value of sustainability in the design world, unravel the complexities of the carbon cycle, and uncover how forests and wood play pivotal roles in carbon sequestration. Discover the versatile applications and climate-positive attributes of TFL panels, empowering you to make informed, eco-conscious choices in your design projects. Elevate your understanding of exceptional design, durability, and sustainability, and contribute to a greener, more resilient future.

  • ( ~ 1 hour, 15 minutes ) 

    One of the most important concepts behind biophilia is the “urge to affiliate with other forms of life” (E.O. Wilson). Humans are connected to nature, inspired by nature, and desire to be harmonized with nature. This course discusses the main principles of biophilic design and explains how a connection with nature benefits human well-being, increases classroom performance, and reduces stress. Multiple case studies demonstrating the positive benefits of daylight and views on building occupants are discussed, and applications of biophilic design are examined.

  • ( ~ 1 hour ) 

    As the population grows, urban centers are becoming denser and land more valuable. Architects are looking for parking solutions that provide space-saving benefits to high-density residential and commercial developments. This course discusses the performance of mechanical parking systems, also known as automated parking or high-density parking (HDP), and how they reduce space required for vehicle storage, increase safety, and minimize the environmental impact of parking vehicles. Specifications and installation are also examined.

  • ( ~ 1 hour ) 

    Water is one of our most valuable resources, yet many states suffer water shortages due to preventable problems such as overuse and leakages. This course discusses the increased need for water conservation and examines the requirements in CALGreen and the LEED® v4.1, Green Globes®, and BREEAM In-Use green building rating systems. The EPA’s WaterSense® initiative is also discussed, along with case studies explaining the benefits of concealed toilet systems and their contribution to water conservation. This course is one of two identical courses titled Water Conservation: Initiatives and Standards . You will receive credit for taking only one of these courses.

  • ( ~ 1 hour ) 

    Now more than ever, the environmental impacts of products used in construction are a worldwide concern and one that the architecture and design (A&D) community is being asked to address in their work. Environmental product declarations (EPDs) are powerful tools when choosing materials for commercial projects. This course discusses how, where, and why to use EPDs to inform sustainable product selection and specification decisions and how EPDs are incorporated into key green building rating systems and codes, including LEED® v4.1 Building Design and Construction (BD+C) and Interior Design and Construction (ID+C), Green Globes® for New Construction (NC), and the International Green Construction Code® (IgCC®).

  • ( ~ 1 hour ) 

    Waterproof, fireproof, nonporous, and eco-friendly natural slate has great value as a building material, particularly given its ability to protect structures for generations. This course reviews the characteristics and properties of slate, presents some of the many design options, and provides guidance on sourcing and specification. The sustainability benefits of roofing slate are also discussed, from its extraction and low-impact processing to its strength and enduring properties in all weather conditions.

  • ( ~ 1 hour, 15 minutes ) 

    Specifying door products that are durable enough to withstand the rigorous demands of high-traffic applications in the healthcare and hospitality industries is crucial to the long-term success of each installation. This course reviews traditional doorway materials and doorway protection options, and provides design solutions that utilize engineered polyethylene terephthalate (PETG) components that extend the life of the door assembly and minimize health and safety issues for the building occupants.

  • ( ~ 1 hour ) 

    Adding small pockets of luxury to a home has become commonplace in spaces like the kitchen and bathroom. Personal saunas are a natural extension to this way of thinking, supporting an owner’s health and relaxation. This course looks at the wide variety of heat bathing options: sauna, infrared, and steam, with a focus on how to both select a product and implement heat bathing in residential and commercial projects.

  • ( ~ 1 hour ) 

    The United Nations has set 2030 as the deadline for member nations to achieve the 17 Sustainable Development Goals. The construction industry has set complementary goals, including the AIA 2030 Commitment to reach net zero emissions in the built environment by 2030. This course discusses how circular economy building products are necessary to achieve sustainable design goals and presents the case study of Kohler WasteLAB, a small manufacturing business within Kohler Company that creates beautiful products for the home from waste.

Displaying 51 - 75 of 392 results.

FIRST PREV [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST