International Code Council

The International Code Council is the leading global source of model codes and standards and building safety solutions that include product evaluation, accreditation, technology, training, and certification.

Click to Learn More About the International Code Council

Visit www.iccsafe.org and Join Now!

Displaying 1 - 25 of 385 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    The facade is one of the most significant contributors to the energy consumption and comfort parameters of any building. This course explores high-performance building envelopes and the use of advanced insulated metal panel systems featuring integrated daylighting and ventilation components that combine to provide weathertightness and maximum thermal performance.

  • ( ~ 1 hour ) 

    Vehicle barriers are needed to protect property and occupants against various threats, including wayward drivers, accidental impacts, smash-and-grab burglaries, and vehicle-ramming attacks. Given the various barriers available, it is crucial to understand how to evaluate and select a perimeter security solution that suits each application. This course reviews the types of barriers and their related testing and performance standards to help ensure the right product is specified for the area it is intended to protect.

  • ( ~ 1 hour ) 

    Made from one of the hardest and most abundant minerals in nature, engineered quartz is a beautiful, durable surface solution for a wide range of commercial and residential applications desiring the beauty of natural stone without its drawbacks. The raw materials of quartz surfacing are harvested from the Earth and formed into slabs via an innovative production process, resulting in a homogenous, nonporous material with superior performance and low maintenance requirements. Reviewed in this course are the features, fabrication guidelines, and design trends of quartz surfacing.

  • ( ~ 1 hour ) 

    Concrete is a very versatile and fundamental building material; however, because it is porous and wicks water through its matrix, concrete has water-related design challenges. This program examines the sustainable benefits of integral concrete waterproofing and analyzes traditional waterproofing methods as compared to integral methods in terms of performance, durability, risk, cost, and construction timeline.

  • ( ~ 1 hour ) 

    At their root, metal roofs and walls made from steel, copper, zinc, or aluminum have a lower environmental impact because of their ability to be recycled and reused. This course focuses on the green aspects of standing seam metal roofs, and in particular, their cool roof characteristics. Also addressed are the implications of heat islands, what constitutes construction of cool roofs/walls and how they work, some rules of thumb for understanding cool metal roofing, roof slope impacts on performance, and codes, ratings, and standards that apply to designing cool roofs/walls.

  • ( ~ 1 hour ) 

    This presentation celebrates the value of incorporating artisanal, handcrafted fixtures and furnishings into a building’s design. Not only are these products unique, functional, and aesthetically appealing, but they can also establish a sense of connection with their maker. Many artisanal, handcrafted products are made using traditional techniques that have been passed down over time, often from generation to generation. And because many of these products are made from sustainable, recycled, or reclaimed materials that are locally available, they can help reduce the environmental impact of a new build. This course illustrates how sourcing artisan-made products for their projects can allow designers and builders to effect social, economic, and environmental change.

  • ( ~ 1 hour ) 

    This course examines the material composition, reinforcement types, and testing standards associated with styrene-butadiene-styrene (SBS) modified bitumen membranes. It explains how fiberglass, polyester, and combination reinforcements affect membrane strength, flexibility, and dimensional stability. The standards that establish testing methods for tensile strength, elongation, and long-term performance are covered in detail. The course also outlines how material selection and installation practices influence roof durability, moisture resistance, and occupant safety.

  • ( ~ 1 hour ) 

    Provides an overview of the noise issues associated with floor/ceiling assemblies of multifamily dwellings, as well as the factors that affect acoustical performance. Also presented is a review of the acoustical solutions that are available with a focus on sound mats with poured underlayment (SMPU) systems.

  • ( ~ 1 hour, 15 minutes ) 

    An expansion joint is a structural gap designed to accommodate the movement of a building in a controlled manner, preventing damage to the building’s internal and external finishes. Expansion joints run throughout a building in walls, ceilings, and floors. Expansion joint covers provide a covered transition across an expansion opening and remain unaffected by the relative movement of the two surfaces either side of the joint. This course explains how to determine joint movement requirements and how to size a joint. It also discusses the performance of different expansion joint cover systems and the applicable fire protection and building codes.

  • ( ~ 1 hour ) 

    Rooftop decks create valuable living and recreational space for building owners, residents, and clients. Accommodating restaurants, hotels, healthcare facilities, and everything from residential to government buildings, rooftop deck systems offer the design flexibility to create versatile, unique outdoor spaces over any structural surface. This course explores the features, surface materials, and design options for rooftop deck systems and provides an overview of recommended planning and installation guidelines.

  • ( ~ 1 hour ) 

    With the advent of “cool” single-ply roofs featuring heat-reflective exterior surfaces and the use of mechanical attachment, new questions have emerged concerning the internal forces at play within the roofing system, especially in regard to vapor movement and the potential for moisture condensation within the roof. This course reviews the fundamentals of vapor movement in roofing systems, current roof condensation research and the tools available to assess roof condensation. It also provides the building design professional with strategies to deal effectively with moisture movement within the roofing system.

  • ( ~ 1 hour, 15 minutes ) 

    Uncorrected thermal bridging can account for 20–70% of heat flow through a building's envelope. Improving details to mitigate both point and linear thermal bridges will significantly improve energy performance. This course reviews types of thermal bridges, examines how they appear in codes and standards, and explores some mitigation concepts and principles. Calculation methods to account for thermal bridging in your projects are introduced, and a sample design project is used to demonstrate code compliance.

  • ( ~ 1 hour, 15 minutes ) 

    As natural gas lines are being phased out for new development and for those who want to move away from burning fossil fuels, it’s becoming critical for homeowners, builders, specifiers, and architects to understand the flexible application of electric heating solutions. Electric heat is a convenient way to reduce energy costs and provide reliable heating options for commercial and residential heating systems that increase occupant safety, comfort, and well-being. This course examines multiple electric heating options to meet consumer needs and provides solutions to common heating concerns.

  • ( ~ 1 hour, 15 minutes ) 

    ICF construction is cost effective and sustainable, and is a superior way to build stronger, quieter, healthier, and more energy-efficient commercial structures. This course explores insulated concrete form (ICF) construction, describing the forms themselves and their construction, performance, and sustainable benefits. Also presented are design guidelines, the installation process, flooring systems, and commercial project applications.

  • ( ~ 1 hour ) 

    This course reviews the trends in outdoor amenity spaces in hospitality, commercial, and multifamily developments with a focus on the use of stainless steel cabinetry in outdoor kitchen design. Included are discussions on outdoor kitchen components, mobile food and beverage service carts, and the post and panel system developed for multifamily applications.

  • ( ~ 1 hour ) 

    Expansion or modification of electrical cabling is rarely considered yet occurs during the lifetime of most buildings. Expansion of in-wall cabling requires additional work, trades, and possibly electrical service interruption, but cable tray facilitates removal and addition of cabling. This course reviews two types of cable tray—ladder tray and wire mesh tray—their components, characteristics, and applications and code-related installation information.

  • ( ~ 1 hour, 15 minutes ) 

    Increased energy efficiency in both new and existing construction continues to be a large factor behind the design decisions we make and the materials we choose to integrate into our buildings. Concrete masonry construction can provide a wide range of benefits. This course illustrates how building envelopes constructed with concrete masonry create high-performance buildings that can exceed energy code requirements.

  • ( ~ 1 hour ) 

    Architectural insulated metal panels (IMPs) are an increasingly popular choice for building developers and architects, presenting a compelling solution that combines functionality, efficiency, and aesthetic appeal. This course reviews the architectural IMP, its applications and benefits, and comparisons to other materials. It explores current trends and developments that are paving the way for increased aesthetic possibilities and building envelope performance.

  • ( ~ 1 hour ) 

    Architects and other design professionals have a critical role to play in reducing global greenhouse gas emissions through building design and product selection. The urgent need to reduce both operational and embodied carbon means that building designers must be familiar with transparency documents that facilitate low-carbon product selection. In this course, we review the types of carbon of concern, transparency documents that provide critical information, and tools for sourcing embodied carbon information. We also look at the contribution of insulated metal panels to both low embodied and low operational carbon buildings.

  • ( ~ 1 hour ) 

    Selecting outdoor kitchen cabinetry and appliances that meet a client’s needs and budget and that address climate concerns can be challenging. This course explores the design of safe, functional, and aesthetically pleasing outdoor kitchen and living areas and presents the various types of cabinetry available, with a focus on stainless steel as a positive alternative for cabinetry. Included is a synopsis of outdoor kitchen design principles and considerations.

  • ( ~ 1 hour ) 

    Infrared patio heaters sustainably increase safety and comfort in outdoor entertaining areas. There are many variables in creating ambient warmth, and the effectiveness and cost of heating an outdoor space depend on the design of the selected heating option. This course looks at the available outdoor heating options and their sustainability profiles, focusing on the types, color choices, mounting methods, and control options of electric infrared heaters. It includes a review of the steps required to select the best solution.

  • ( ~ 1 hour ) 

    Cellulose insulation has been used successfully by builders and designers for hundreds of years to provide comfort and warmth. Today, builders and designers also consider sustainability principles, climate change, occupant health and wellness issues, energy conservation, and carbon sequestration. Advanced cellulose insulation addresses all those areas as well. This course explains its environmental benefits, including its carbon capture ability, how it improves occupant health and well-being, and its numerous high-performance thermal, acoustic, and fire-resistant attributes.

  • ( ~ 1 hour ) 

    With limited exceptions, the International Building Code® (IBC®) requires testing and compliance with NFPA 285 for exterior wall assemblies of buildings of Types I, II, III, and IV construction containing foam plastic insulation. This course examines three methods for demonstrating that an exterior wall assembly design complies with NFPA 285, including engineering analysis. The course also discusses how and where to locate NFPA 285 information for each compliance method.

  • ( ~ 1 hour ) 

    Due to advancements in architectural decorative glass technology, the number of design options available to help designers and architects achieve the specific aesthetics and performance requirements they desire has dramatically increased. This course provides a review of architectural decorative glass including product options, applications, features, and specification considerations. Also discussed is how decorative glass can contribute to sustainable design and LEED® initiatives.

  • ( ~ 1 hour ) 

    The Americans with Disabilities Act (ADA) sets the minimum requirements for newly designed and constructed or renovated state and local government facilities, public accommodations, and commercial facilities to be readily accessible to and usable by individuals with disabilities. Many projects must also follow the provisions of the 2017 version of ICC A117.1,  Standard for Accessible and Usable Buildings and Facilities . This course identifies the benefits of accessibility standards and the prescriptive requirements for accessible restrooms set by the ADA and ICC A117.1.

Displaying 1 - 25 of 385 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST