Green Building Certification Inc.

The "GBCI CE" mark indicates that the course, as described in the application and materials submitted by the provider to USGBC, holds a General CE designation and meets the General CE conditions set out in the USGBC Education Partner Program course guidelines.

Click to Learn More About GBCI

Displaying 1 - 25 of 246 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    The facade is one of the most significant contributors to the energy consumption and comfort parameters of any building. This course explores high-performance building envelopes and the use of advanced insulated metal panel systems featuring integrated daylighting and ventilation components that combine to provide weathertightness and maximum thermal performance.

  • ( ~ 1 hour ) 

    As environmental concerns grow, repurposing materials and finding new ways to showcase their unique qualities in design have become increasingly important. This course examines terrazzo’s history, system types, flooring assemblies, and restoration and refinishing options. Discover its enduring versatility and charm through renovation projects featuring newly installed and renewed vintage floors, where its durability, material attributes, and design potential can help meet credit requirements in the LEED ® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building StandardTM version 2.

  • ( ~ 1 hour ) 

    An energy recovery ventilator (ERV) system provides occupants with filtered, balanced, and tempered air within their living space. Airborne contaminants can be greatly reduced with ERV systems. This course provides knowledge about the need, use, design, and installation of ERVs in the modern dwelling unit and when retrofitting existing structures. The course also addresses the environmental advantages of sustainable and healthy solutions for indoor air quality.

  • ( ~ 1 hour, 15 minutes ) 

    While frequently chosen for aesthetics and durability, clay brick is not often considered when energy efficiency is a primary concern, even though it historically played a significant role in occupant comfort before the widespread use of HVAC systems. This course discusses the basics of heat transfer, relevant energy code provisions for walls, and how current research by the National Brick Research Center demonstrates the role that brick veneer can play in meeting or exceeding energy requirements in modern wall assemblies.

  • ( ~ 1 hour ) 

    Extreme weather events of all sorts are becoming increasingly frequent and ferocious. Wood stick-framed structures struggle to withstand them. As climate behavior shifts and worsens, building damage and destruction increase, building codes evolve, and insurance premiums skyrocket or simply become unavailable for certain building types in some locations. Architects must now utilize stronger, more resilient, noncombustible building approaches to address this situation. In addition, mounting pressures related to labor shortages, rising material costs, stringent building codes, and environmental volatility are pushing architects, developers, and engineers to reimagine their approaches to structural design and material selection. This course explores how an innovative, scalable, and economical cold-formed steel column and composite beam framing system can and does address these issues to create faster and deliver stronger, more cost-effective, and sustainable projects. This well-proven, code compliant system reduces dependencies on multiple trades and minimizes the number of handoffs, positively impacting schedule compression, which then translates directly into earlier openings, faster revenue generation, and reduced labor costs. The system is applicable to a range of housing, hotel, and commercial midrise projects in all climates. The course begins by exploring the limitations of traditional wood and metal framing systems. It then describes this prefabricated cold-formed steel (CFS) column and beam framing system and its details, erection methodology, advantages, environmental and sustainability benefits, accreditations, and certifications. It concludes with some representative examples of real-life projects.

  • ( ~ 1 hour ) 

    Rooftop deck systems offer the design flexibility to create adaptable, sustainable outdoor spaces that provide myriad environmental, social, economic, and aesthetic benefits. This course presents the three pillars of sustainability and how building products, materials, and systems can contribute to sustainable design. It outlines forest management objectives and practices and the responsible sourcing of wood for rooftop deck tiles. Case studies exemplify how rooftop deck systems can contribute to sustainable design objectives.

  • ( ~ 1 hour, 15 minutes ) 

    Rubber has been recycled for more than a century and used in recycled rubber flooring for over 65 years. Over this time, it has been proven to be a durable and flexible product that improves numerous aspects of the built environment while benefiting the natural environment. This course examines the sustainability attributes of recycled rubber flooring, how rubber is recycled, how it is used to make flooring, its health and safety benefits, and where to use and not use the product. The course also includes an overview of how recycled rubber flooring can be used to meet a number of USGBC’s LEED® v4 BD+C and WELL Building Standard® v2 credit requirements.

  • ( ~ 1 hour ) 

    Sound control is a critical element in a building’s design. We all think of the walls, ceiling, and floor when discussing sound attenuation, but without the proper acoustic door, the sound-control goals in an acoustic plan may not be met. This course reviews healthy sound levels and how to test and identify target STC ratings. Also discussed are the elements of acoustic door assemblies and how they address fire ratings and ADA compliance, contribute to LEED® certification and green building, and provide security for classified files and electronic data.

  • ( ~ 1 hour ) 

    Designing restrooms to allow for and maximize proper hygiene is important in reducing the spread of germs. This course discusses the elements of hygienic restroom design and how reducing required touchpoints helps to increase safety and cleanliness. The key steps in proper hand hygiene are also discussed. The course then focuses on hand dryers and considers their impact on hand hygiene and sustainability. The future of commercial restroom design is then explored.

  • ( ~ 1 hour ) 

    Today—as climate change, population growth, and record droughts present an unprecedented strain on our water supply—conservation technology is building awareness to the importance of having the most water efficient fixtures in a home or business. This course recognizes the flush toilet as one of the biggest users of water and discusses how toilet design is pushing flush technology to develop ways for homes and commercial buildings to conserve water without sacrificing the performance of the toilet. Industry testing protocols and the water-saving capabilities of different technologies are evaluated.

  • ( ~ 1 hour ) 

    With the ever-increasing focus on the sustainable built environment, building owners, architects, engineers, and contractors are incorporating structural steel into their designs. Presented here is a comprehensive view of the cradle-to-cradle structural steel supply chain from a sustainability perspective. Also discussed are steel production and design, steel’s potential contribution to LEED v4 credits, thermal capacity, and the environmental and life cycle benefits of prefabricated fireproof steel columns.

  • ( ~ 1 hour ) 

    As the architectural industry shifts toward more sustainable, low-maintenance materials, aluminum has emerged as a preferred choice for its eco-friendly properties, design versatility, and long-lasting performance. This course explores its manufacturing and installation processes, durable finishes, and wide-ranging applications, including cladding, soffits, battens, fencing, gates, screens, and pergolas. Discover how aluminum helps architects elevate design while meeting sustainability goals, particularly those of the LEED® v4.1 Building Design and Construction green building rating system.

  • ( ~ 1 hour, 15 minutes ) 

    Le besoin d’évaluer les ponts thermiques dans la conception et le rendement d’un bâtiment a gagné en importance en raison des exigences grandissantes en matière d’efficience énergétique des bâtiments. Ce cours sert d’introduction aux ponts thermiques, aux exigences du code de l’énergie et à l’usage de barrières thermiques conçues pour améliorer l’efficience énergétique de l’enveloppe du bâtiment.

  • ( ~ 1 hour ) 

    Universal hot water availability is generally taken for granted. At a time when energy prices and sources, environmental concerns, and water shortages are increasing in significance, it is important to produce hot water in a manner that addresses all these issues. This course explains how electric tankless water heaters (ETWHs) do this while also improving health and safety conditions and reducing costs. The examination includes detailed descriptions of many types of ETWHs and the basic calculations and selection criteria for the most suitable system.

  • ( ~ 1 hour ) 

    Well-designed and detailed skylight systems can significantly improve both building and occupant performance. This course explores the benefits, techniques, and importance of daylighting systems that utilize high-performance skylights to optimize daylighting benefits, avoid negative impacts, and contribute positively to building, occupant, and envelope performance. It examines how daylighting with skylights can help meet the requirements of the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL v2 Building Standard™.

  • ( ~ 1 hour ) 

    Architects and designers are responsible for planning the provision of drinking water in commercial and residential facilities, yet this essential element is often overlooked in sustainable design. This course covers the main water delivery methods (tap, bottled, and filtration systems) and their impacts on the health of people and the environment. Additionally, the course examines multifunctional taps equipped with three-in-one filtration that promote sustainable water delivery and help meet credit requirements in the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    Beneficial acoustic environments are especially important in healthcare facilities as inappropriate acoustics can be damaging to patients and stressful and tiring to staff. Because a beneficial acoustic environment plays an important role in supporting health, safety, and well-being for all occupants, acoustic issues are now a key component of healthcare design guidelines. This course explores the impacts of acoustics on healthcare, outlines the relevant acoustic standards and guidelines, and describes the methods by which designers can address the issues and improve healthcare facility conditions for patients, families, and healthcare workers.

  • ( ~ 1 hour ) 

    Vinyl has long been a material of choice for construction products for interiors and exteriors because of its durability, cleanability, affordability, and suitability for a vast range of applications. This course furthers the conversation by discussing vinyl’s recyclability and sustainability and the attributes of laminated rigid PVC exterior and interior wall panels and siding and soffit products.

  • ( ~ 1 hour ) 

    With the global rise in natural disasters and the increasing need for sustainable environments, resiliency has become a necessity in the design and building industries. This course provides an overview of resilient design, how it relates to building codes and standards, and the role it plays in ensuring the safety and sustainability of the built environment. It examines the role masonry construction plays in meeting resilient design goals and the inherent properties of masonry that make it resilient and provides examples and case studies of resilient design strategies.

  • ( ~ 1 hour ) 

    This course introduces the learner to the benefits and design advantages of porcelain surface material for both indoor and outdoor use in residential and commercial projects. Since it is a relatively new material in the US, we will review its components and manufacture and how they result in a product with exceptional characteristics for human health and durability. We'll also show and discuss indoor and outdoor applications, the variations available for vertical and horizontal applications, and the many design options. Finally, we’ll help the learner understand what is needed to design with this material and how to work with a fabricator.

  • ( ~ 1 hour ) 

    The reasons for and benefits of adopting STEP have become increasingly clear as both national and international communities continue in their efforts to transition from dirty fuel sources to renewable ones. This course reviews the various systems and strategies that enable STEP, such as smart grids and microgrids, and explores strategies that STEP enables, such as integrated design processes, efficient water management, and energy innovation.

  • ( ~ 1 hour ) 

    With the demand for sustainable power on the rise, building owners and homeowners alike are turning to solar power as a supplemental power generator. Choosing the right platform for the solar panels is a critical step in the design process and can have a significant impact on both initial and long-term costs. This course discusses the basics of photovoltaic systems, including the components and rooftop applications. Comparisons between traditional roofing and standing seam metal roofing platforms are examined, and the benefits of a nonpenetrating clamping system are discussed.

  • ( ~ 1 hour ) 

    The thermal and dual modification of wood are processes used to improve wood’s profile in terms of durability, dimensional stability, overall performance, and inherent resilience and sustainability. The resulting products can be utilized in many building applications, from decking and siding to pergolas and nonstructural beams, as well as paneling, soffits, and interior trim applications. This course explores the science behind the thermal and dual modification of wood. Examples of modified wood and case studies are also reviewed.  

  • ( ~ 1 hour ) 

    As impervious land cover increases, so does the need for stormwater management. Concrete grid pavements provide increased infiltration rates, positively affecting runoff flow while decreasing erosion. This course introduces the range of grid pavement and erosion control applications and provides design and construction guidelines. Environmental performance is defined via conclusions from several research projects. Concrete grid pavements require minimal maintenance when properly designed and installed in appropriate applications. This course also includes an overview of how concrete grid paving units can be used to meet a number of LEED® v4.1 BD+C credit requirements.

  • ( ~ 1 hour ) 

    Restrooms and other plumbing applications must comply with accessibility regulations, but do you know exactly how to do that? This course is a handy reference that explains what codes and regulations you must satisfy, when those requirements apply to new construction and alterations, and how to select and install fixtures to meet accessibility standards and the requirements of the LEED® v5 for Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ v2.

Displaying 1 - 25 of 246 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST