Green Building Certification Inc.

The "GBCI CE" mark indicates that the course, as described in the application and materials submitted by the provider to USGBC, holds a General CE designation and meets the General CE conditions set out in the USGBC Education Partner Program course guidelines.

Click to Learn More About GBCI

Displaying 1 - 25 of 246 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    With the demand for sustainable power on the rise, building owners and homeowners alike are turning to solar power as a supplemental power generator. Choosing the right platform for the solar panels is a critical step in the design process and can have a significant impact on both initial and long-term costs. This course discusses the basics of photovoltaic systems, including the components and rooftop applications. Comparisons between traditional roofing and standing seam metal roofing platforms are examined, and the benefits of a nonpenetrating clamping system are discussed.

  • ( ~ 1 hour ) 

    Third-party environmental product declarations (EPDs), using a life-cycle analysis (LCA) approach, provide a comprehensive analysis and quantification of a product’s sustainability. This course examines how EPDs can inform sustainable site furniture selection and how the use of sustainable site furniture can contribute to meeting various credit requirements of LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    Daylight is an essential part of our health and well-being, but it needs management. Shading strives to maximize daylight without compromising building occupant comfort and well-being. This course explores the role daylight has within the built environment and its impact on occupants and energy usage, with a focus on how to better specify shadecloth based on factors such as project type, solar optical properties, shadecloth composition, and environmental factors.

  • ( ~ 1 hour ) 

    Net zero energy ready buildings are a popular topic in today's world of climate change. This course explores how energy efficiency has expanded toward exterior wall assemblies, where thermal bridging and thermally broken subframing systems are becoming the new norm.

  • ( ~ 1 hour ) 

    Terracotta rainscreen cladding systems enhance building envelope performance through improved moisture management, reflected in the WELL Building Standard™ version 2, as well as through energy efficiency, structural integrity, and durability. The course examines the manufacturing of terracotta cladding, highlighting responsible clay sourcing and postextraction site reclamation, and discusses performance, aesthetics, and sustainability benefits, including how terracotta cladding can contribute to meeting the requirements of LEED® v5 Building Design and Construction (BD+C): New Construction. Additional topics include system color, layout, and wall assembly options, best installation practices, and industry standards and tests.

  • ( ~ 1 hour ) 

    Rooftop deck systems offer the design flexibility to create adaptable, sustainable outdoor spaces that provide myriad environmental, social, economic, and aesthetic benefits. This course presents the three pillars of sustainability and how building products, materials, and systems can contribute to sustainable design. It outlines forest management objectives and practices and the responsible sourcing of wood for rooftop deck tiles. Case studies exemplify how rooftop deck systems can contribute to sustainable design objectives.

  • ( ~ 1 hour ) 

    Low Impact Development (LID) has several advantages over traditional stormwater management approaches. Since impervious pavement is the main source of stormwater runoff, LID strategies recommend permeable paving for hard surfaces. The course discusses LID, its goals and principles, and how they are achieved. It provides an overview of permeable pavements, and more particularly, plastic permeable grid paver systems and how they support LID goals.

  • ( ~ 1 hour ) 

    Buildings, roads, and man-made landscapes can harm the natural environment with their effect on the natural water cycle. Architects and designers need to be aware of the best practices and experts’ recommendations to specify the correct type of drainage system that serves users and protects the environment. This course discusses the positive contributions of modern drainage systems to the built environment and their role in improving sustainability. The technical and aesthetic aspects of trench drain design are also covered.

  • ( ~ 30 minutes ) 

    As cities continue to grow, incorporating synthetic surfacing into rooftop spaces offers a safe, practical, and innovative solution to creating more livable, attractive, and resilient urban environments. The course explores synthetic rooftop surfacing, including its applications; environmental, health, and safety benefits; and product, manufacturer, and installer certifications. Also discussed is how synthetic turf can contribute to achieving certification in LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    Animals, plants, and microbes are engineers of what works and lasts on earth. Biomimicry is a practice in which nature’s designs, patterns, and strategies are examined to find sustainable solutions to our technical and design problems. This course discusses how applying the concepts of biomimicry can better connect our designs and buildings with nature and examines the relationship between nature’s solutions to light, heat, glare control, and shading design principles.

  • ( ~ 1 hour, 15 minutes ) 

    Stone has long been valued for its durability, reliability, and beauty. Today, natural thin stone veneer offers these benefits with reduced weight, cost, and environmental impact. This course explores its applications in commercial and residential settings, covering aesthetics, performance, and key specification standards. It also examines the sustainability profile of thin stone veneer compared to full natural and manufactured stone, highlighting an industry-wide LCA, responsible quarrying and processing, and how collaboration with fabricators can reduce environmental impact while preserving quality and design integrity.

  • ( ~ 1 hour ) 

    The United Nations has set 2030 as the deadline for member nations to achieve the 17 Sustainable Development Goals. The construction industry has set complementary goals, including the AIA 2030 Commitment to reach net zero emissions in the built environment by 2030. This course discusses how circular economy building products are necessary to achieve sustainable design goals and presents the case study of Kohler WasteLAB, a small manufacturing business within Kohler Company that creates beautiful products for the home from waste.

  • ( ~ 1 hour, 15 minutes ) 

    Increased energy efficiency in both new and existing construction continues to be a large factor behind the design decisions we make and the materials we choose to integrate into our buildings. Concrete masonry construction can provide a wide range of benefits. This course illustrates how building envelopes constructed with concrete masonry create high-performance buildings that can exceed energy code requirements.

  • ( ~ 1 hour ) 

    With the ever-increasing focus on the sustainable built environment, building owners, architects, engineers, and contractors are incorporating structural steel into their designs. Presented here is a comprehensive view of the cradle-to-cradle structural steel supply chain from a sustainability perspective. Also discussed are steel production and design, steel’s potential contribution to LEED v4 credits, thermal capacity, and the environmental and life cycle benefits of prefabricated fireproof steel columns.

  • ( ~ 1 hour ) 

    As the market continues to transform the way sustainable buildings are designed, single-skin metal roof and siding products are at the forefront of contributing to healthier built environments. This course breaks down the material inputs and sustainable attributes of single-skin metal roof and siding panels and includes an overview of how the panels can contribute toward earning several LEED ® for Building Design and Construction credits in v4.1.

  • ( ~ 1 hour, 30 minutes ) 

    Growing US cities face escalating housing costs, residential and commercial displacement, homelessness, and the suburbanization of poverty. As increasing numbers of households are pushed out of the city by rising housing costs, they are burdened with long commutes and increased transportation costs while their carbon emissions escalate. These challenges are exacerbated by a deeply embedded policy—single-family zoning—that accounts for 75% or more of the land area allotted for housing in many fast-growing US cities. In this first of a two-part series, the history, evolution, and social equity and environmental impacts of single-family zoning policy in one city, Seattle, serve as an example of conditions in a number of fast-growing cities around the country. It also outlines the aggressive resistance to change and strategies architects can employ to address this. Each part of Right to the City can be taken as an individual course. Want free access to this and other NCARB courses? The NCARB Continuum Education Program offers free HSW CE courses to licensure candidates and architects who hold a current NCARB Certificate, which can be accessed through their NCARB record. Renew your NCARB Certificate , or get NCARB Certified .

     In order to download this course, a USD $25.00 fee must be paid.

  • ( ~ 1 hour ) 

    This program introduces building retrofits as a method to achieve green building standards by adapting existing structures. While a building retrofit may have several types of interventions, effective air sealing improves the durability of the structure and occupant comfort, health, and safety. This course includes a detailed look at sources of air leakage and the various methods available to address this infiltration. Several real-world examples demonstrate the importance of identifying the source of air leakage, investigating existing conditions, and proper detailing.

  • ( ~ 1 hour, 15 minutes ) 

    One of the most important concepts behind biophilia is the “urge to affiliate with other forms of life” (E.O. Wilson). Humans are connected to nature, inspired by nature, and desire to be harmonized with nature. This course discusses the main principles of biophilic design and explains how a connection with nature benefits human well-being, increases classroom performance, and reduces stress. Multiple case studies demonstrating the positive benefits of daylight and views on building occupants are discussed, and applications of biophilic design are examined.

  • ( ~ 1 hour ) 

    Thermal modification is a tried and tested process for increasing the durability of wood while maintaining a warm aesthetic in building design. This course examines all aspects of this sustainable wood product and how it can be incorporated into a variety of projects.

  • ( ~ 1 hour ) 

    Undesirable acoustics in educational spaces adversely affect the learning and teaching processes. The impact on students’ academic achievement, social adaptation, and mental health can be profound and long lasting. This course examines the impact of different sound problems and presents solutions that create synergy between the architecture and the classroom environment to optimize student learning and engagement and teacher retention.

  • ( ~ 1 hour ) 

    Beneficial acoustic environments are especially important in healthcare facilities as inappropriate acoustics can be damaging to patients and stressful and tiring to staff. Because a beneficial acoustic environment plays an important role in supporting health, safety, and well-being for all occupants, acoustic issues are now a key component of healthcare design guidelines. This course explores the impacts of acoustics on healthcare, outlines the relevant acoustic standards and guidelines, and describes the methods by which designers can address the issues and improve healthcare facility conditions for patients, families, and healthcare workers.

  • ( ~ 1 hour ) 

    Energy creation, distribution, and consumption are all in a period of transition. Understanding this transition and its various aspects is critical to sustainable transitional energy planning (STEP). This course delves into the reasoning behind the STEP approach and its contributions to creating resilient communities and explores available exhaustible and renewable energy resources and innovations in the energy sector that can be leveraged by STEP.

  • ( ~ 1 hour ) 

    Incorporating nature into the built environment through biophilic design increases occupant well-being, productivity, and health and is an integral component of an ecologically healthy and sustainable community. Presented here is an overview of biophilic design, its relationship to sustainability, and its positive human, environmental, and economic outcomes. Case studies demonstrate how rooftop deck systems can contribute to biophilic and sustainable design objectives.

  • ( ~ 1 hour ) 

    Infrared patio heaters sustainably increase safety and comfort in outdoor entertaining areas. There are many variables in creating ambient warmth, and the effectiveness and cost of heating an outdoor space depend on the design of the selected heating option. This course looks at the available outdoor heating options and their sustainability profiles, focusing on the types, color choices, mounting methods, and control options of electric infrared heaters. It includes a review of the steps required to select the best solution.

  • ( ~ 1 hour ) 

    Natural stone pathways offer functional, sustainable solutions that maximize user enjoyment of outdoor spaces without compromising aesthetics. This course reviews pathway material options in terms of durability, appearance, and financial and environmental costs and benefits. The focus is on three natural stone pathway mixes, designed to meet the permeability, erosion resistance, accessibility, traffic level, and installation and maintenance requirements of any project. Also reviewed are how these materials may contribute toward credits in the LEED® v5 Building Design and Construction and Sustainable SITES Initiative® (SITES®) v2 rating systems.

Displaying 1 - 25 of 246 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST