Health, Safety, and Welfare

All courses identified as HSW, cover Health, Safety, and Welfare topics and have been approved by the AIA (American Institute of Architects) as an HSW Learning Unit (LU/HSW).

Displaying 476 - 500 of 562 results.

FIRST PREV [426-450] [451-475] [476-500] [501-525] [526-550] NEXT LAST


  • ( ~ 1 hour ) 

    Homeowners are looking for alternatives to traditional cladding materials that are affordable and long lasting and require little or no upkeep. Advances in technology and manufacturing techniques mean cellular PVC cladding products can meet all these requirements without sacrificing aesthetics. This course reviews the benefits of cellular PVC as a cladding material and discusses how cellular PVC rebutted and rejointed (R&R) prefinished shingles can provide the look and feel of wood shingles with an extended level of durability and low maintenance.


  • ( ~ 1 hour ) 

    Third-party environmental product declarations (EPDs), using a life-cycle analysis (LCA) approach, provide a comprehensive analysis and quantification of a product’s sustainability. This course examines how EPDs can inform sustainable site furniture selection and how the use of sustainable site furniture can contribute to meeting various credit requirements of LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.


  • ( ~ 1 hour ) 

    Detectable warning surfaces are surfaces designed to warn the visually impaired of hazards in the path of travel. The Americans with Disabilities Act (ADA) and Architectural Barriers Act (ABA) accessibility guidelines require detectable warning surfaces at public rights-of-way locations. The state of California is a leader in its requirements for detectable warning surfaces. This course introduces the current guidelines and regulations regarding detectable warning surfaces, as well as the different types of surface systems and installation methods.


  • ( ~ 1 hour ) 

    Water and moisture intrusion can affect everything from a building’s structural durability to its indoor air quality. Understanding the material options, installation, and testing criteria for high-performing weather-resistant barriers (WRBs) can help specifiers manage present and future moisture concerns.


  • ( ~ 15 minutes ) 

    Policies targeting the reduction of carbon emissions associated with building products require the disclosure of embodied carbon data to inform those policies and verify whether reduction targets or incentive requirements have been met. This course aims to provide a guide to collecting high-quality embodied carbon data.


  • ( ~ 1 hour, 15 minutes ) 

    Mechanical vibration and structure-borne noise exist in all building environments. Depending on how severe the disturbance and how sensitive the equipment, the problems caused by the vibration or shock can be negligible or destructive. This course explains why, during the entire building design process, it is essential to consider what a building is being used for and the potential impact of vibration and structure-borne noise, not only from external sources but also from equipment running within the building.


  • ( ~ 1 hour ) 

    Elevate your railing designs with a premanufactured system without compromising aesthetics or adaptability to site conditions. When you choose a manufacturer with design and engineering capabilities, you can customize premanufactured systems to meet safety standards AND enhance a project’s design. In this course, we discuss how a railing manufacturer helped three architects create unique solutions from premanufactured components.


  • ( ~ 1 hour, 15 minutes ) 

    The trend toward more sustainable, healthy, and energy-conserving enclosures has brought building science and moisture management to the forefront of daily conversation for professionals in the construction industry. In this course, we delve into the science behind current practices and explore the role of building envelopes, optimal wall assemblies, and enclosures in vapor, water, air, and thermal control.


  • ( ~ 1 hour, 15 minutes ) 

    As natural gas lines are being phased out for new development and for those who want to move away from burning fossil fuels, it’s becoming critical for homeowners, builders, specifiers, and architects to understand the flexible application of electric heating solutions. Electric heat is a convenient way to reduce energy costs and provide reliable heating options for commercial and residential heating systems that increase occupant safety, comfort, and well-being. This course examines multiple electric heating options to meet consumer needs and provides solutions to common heating concerns.


  • ( ~ 1 hour ) 

    Specifying the right sectional door system for your commercial project can have a great effect on the health, safety, and welfare of building occupants. This course covers commercial sectional door systems, including the various types of doors available and their associated characteristics including energy efficiency and durability, along with a discussion on how to specify the correct door to meet project requirements.


  • ( ~ 1 hour ) 

    Noise pollution is excessive environmental noise that disrupts the activity or balance of human life. As urban environments have become increasingly dense, the noise problem has magnified, negatively impacting mental and physical health. Sound is everywhere, but it can be controlled with architectural solutions. This course provides a refresher on the basic science of acoustics and how sound interacts with our surroundings. From there, the course explores various architectural solutions, the technology behind them, and how they are successfully integrated into buildings to reduce noise. Discussion of installation applications addresses sound control options for retrofits and new construction.


  • ( ~ 1 hour ) 

    Power and charging requirements for hospitality facilities are changing radically and rapidly. This course examines the options for and benefits of supplying power and charging outlets in walls, furniture, headboards, nightstands, public seating, and public gathering spaces, including outdoor areas, as well as the applicable codes for furniture-based power outlets. The course concludes with an overview of the benefits of occupancy sensors and auto-off switches in guest rooms and the installation requirements to comply with energy and electrical codes.


  • ( ~ 1 hour ) 

    Stone is perhaps man's oldest, most durable, most reliable, and most beautiful building material. It is now possible to acquire all of its benefits without the need for heavy, thick, and expensive walls and foundations. This course explains how natural thin stone veneer can be economically utilized to protect and beautify commercial, institutional, and residential indoor and outdoor surfaces, the varying attributes of different stones, the numerous looks that can be achieved, and the standards that inform their selection, specification, and usage.


  • ( ~ 1 hour ) 

    Animals, plants, and microbes are engineers of what works and lasts on earth. Biomimicry is a practice in which nature’s designs, patterns, and strategies are examined to find sustainable solutions to our technical and design problems. This course discusses how applying the concepts of biomimicry can better connect our designs and buildings with nature and examines the relationship between nature’s solutions to light, heat, glare control, and shading design principles.


  • ( ~ 1 hour ) 

    Main entrance air curtains are used by architects and engineers in commercial, institutional, and industrial settings to both improve energy efficiency and protect occupant comfort and well-being. This course reviews the research that led to air curtains being approved as an alternative to vestibules in ASHRAE 90.1-2019 and other building codes, as well as how air curtains on main entries contribute to sustainability goals around energy conservation, public health, and indoor air quality.


  • ( ~ 1 hour ) 

    Ventilation grilles influence HVAC system performance but can pose aesthetic challenges for designers. Custom grilles made with modern fabrication techniques employ a variety of materials and finishes to create solutions that enhance and fully integrate with architectural interiors. This course discusses the basic mechanics of effective air distribution in buildings, performance characteristics of grilles, grille types, and custom design options.


  • ( ~ 1 hour ) 

    Understanding the performance of building materials in real-world conditions is key to a successful building design. Recent studies have shown that the commonly reported R-values of polyisocyanurate foams at room temperature may overstate their real-world performance in cooler temperatures, potentially resulting in gaps in designed building enclosure assembly performance and quality. Through a theoretical framework and empirical data, this course shows that optimized polyisocyanurate foam insulation results in better performance, leading to improved energy savings and reduced potential for condensation. Participants are encouraged to explore innovative insulation materials, understand differences between them, and match optimal materials to specific applications while meeting modern construction codes and regulations. By matching the right insulation materials to the application, architects can contribute to energy-efficient and cost-conscious construction practices and help buildings reduce their impact on the environment.


  • ( ~ 1 hour ) 

    This program introduces building retrofits as a method to achieve green building standards by adapting existing structures. While a building retrofit may have several types of interventions, effective air sealing improves the durability of the structure and occupant comfort, health, and safety. This course includes a detailed look at sources of air leakage and the various methods available to address this infiltration. Several real-world examples demonstrate the importance of identifying the source of air leakage, investigating existing conditions, and proper detailing.


  • ( ~ 1 hour ) 

    The cleanliness of rooms in healthcare facilities is critical in preventing patients from contracting life-threatening infections. Along with proper hand hygiene, frequent privacy or cubicle curtain changes help prevent the spread of healthcare associated infections (HAIs). This course examines the social, economic, and operational impact HAIs have on a healthcare organization and explains why removable curtain systems make it easier to keep privacy curtains clear of dangerous pathogens and protect the physical health of the building users.


  • ( ~ 1 hour ) 

    Ensure your turf, plants, and trees are getting the appropriate water—in the right quantity, with the proper safety, at the highest efficiency—to reflect your unique landscape environment. This course addresses the most important factors to be considered to achieve optimal performance. At the “root” of an effective irrigation system is proper water volume, pressure, and safety.


  • ( ~ 1 hour, 15 minutes ) 

    Rubber has been recycled for more than a century and used in recycled rubber flooring for over 65 years. Over this time, it has been proven to be a durable and flexible product that improves numerous aspects of the built environment while benefiting the natural environment. This course examines the sustainability attributes of recycled rubber flooring, how rubber is recycled, how it is used to make flooring, its health and safety benefits, and where to use and not use the product. The course also includes an overview of how recycled rubber flooring can be used to meet a number of USGBC’s LEED® v4 BD+C and WELL Building Standard® v2 credit requirements.


  • ( ~ 1 hour ) 

    Made from one of the hardest and most abundant minerals in nature, engineered quartz is a beautiful, durable surface solution for a wide range of commercial and residential applications desiring the beauty of natural stone without its drawbacks. The raw materials of quartz surfacing are harvested from the Earth and formed into slabs via an innovative production process, resulting in a homogenous, nonporous material with superior performance and low maintenance requirements. Reviewed in this course are the features, fabrication guidelines, and design trends of quartz surfacing.


  • ( ~ 1 hour ) 

    Roofing technologies have come a long way from labor-intensive BUR systems that achieved watertightness through redundancy. Today’s single-ply membranes are thin, light and reliable, and installation is safe and efficient. This course focuses on thermoplastic single-plies, particularly those that are PVC based, and explores their benefits and limitations as well as the important factors to consider when selecting a roof system, ranging from fastening techniques to warranties to sustainability.


  • ( ~ 1 hour ) 

    Rooftop deck systems offer the design flexibility to create adaptable, sustainable outdoor spaces that provide myriad environmental, social, economic, and aesthetic benefits. This course presents the three pillars of sustainability and how building products, materials, and systems can contribute to sustainable design. It outlines forest management objectives and practices and the responsible sourcing of wood for rooftop deck tiles. Case studies exemplify how rooftop deck systems can contribute to sustainable design objectives.


  • ( ~ 1 hour, 15 minutes ) 

    Our built environment must be optimized to create comfortable and healthier spaces. Shading systems can be used to enhance our spaces by providing optimal daylight and comfort to create an ideal indoor environment. This course reviews the performance, aesthetics, and material health of various shadecloth compositions and how each factor contributes to the shadecloth selection process.

Displaying 476 - 500 of 562 results.

FIRST PREV [426-450] [451-475] [476-500] [501-525] [526-550] NEXT LAST